• 제목/요약/키워드: biomolecule

검색결과 151건 처리시간 0.021초

Identification of 1,3,6,8-Tetrahydroxynaphthalene Synthase (ThnA) from Nocardia sp. CS682

  • Purna Bahadur Poudel;Rubin Thapa Magar;Adzemye Fovennso Bridget;Jae Kyung Sohng
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권7호
    • /
    • pp.949-954
    • /
    • 2023
  • Type III polyketide synthase (PKS) found in bacteria is known as 1,3,6,8-tetrahydroxynaphthalene synthase (THNS). Microbial type III PKSs synthesize various compounds that possess crucial biological functions and significant pharmaceutical activities. Based on our sequence analysis, we have identified a putative type III polyketide synthase from Nocardia sp. CS682 was named as ThnA. The role of ThnA, in Nocardia sp. CS682 during the biosynthesis of 1,3,6,8 tetrahydroxynaphthalene(THN), which is the key intermediate of 1-(α-L-(2-O-methyl)-6-deoxymannopyranosyloxy)-3,6,8-trimethoxynaphthalene (IBR-3) was characterized. ThnA utilized five molecules of malonyl-CoA as a starter substrate to generate the polyketide 1,3,6,8-tetrahydroxynaphthalene, which could spontaneously be oxidized to the red flaviolin compound 2,5,7-trihydroxy-1,4-naphthoquinone. The amino acid sequence alignment of ThnA revealed similarities with a previously identified type III PKS and identified Cys138, Phe188, His270, and Asn303 as four highly conserved active site amino acid residues, as found in other known polyketide synthases. In this study, we report the heterologous expression of the type III polyketide synthase thnA in S. lividans TK24 and the identification of THN production in a mutant strain. We also compared the transcription level of thnA in S. lividans TK24 and S. lividans pIBR25-thnA and found that thnA was only transcribed in the mutant.

Heterologous Production of Paromamine in Streptomyces lividans TK24 Using Kanamycin Biosynthetic Genes from Streptomyces kanamyceticus ATCC12853

  • Nepal, Keshav Kumar;Oh, Tae-Jin;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • 제27권5호
    • /
    • pp.601-608
    • /
    • 2009
  • The 2-deoxystreptamine and paromamine are two key intermediates in kanamycin biosynthesis. In the present study, pSK-2 and pSK-7 recombinant plasmids were constructed with two combinations of genes: kanABK, and kanABKF and kacA respectively from kanamycin producer Streptomyces kanamyceticus ATCC12853. These plasmids were heterologously expressed into Streptomyces lividans TK24 independently and generated two recombinant strains named S. lividans SK-2/SL and S. lividans SK-7/SL, respectively. ESI/ MS and ESI-LC/MS analysis of the metabolite from S. lividans SK-2/SL showed that the compound had a molecular mass of 163 $[M+H]^+$, which corresponds to that of 2-deoxystreptamine. ESI/MS and MS/MS analysis of metabolites from S. lividans SK-7/SL demonstrated the production of paromamine with a molecular mass of $324[M+H]^+$. In this study, we report the production of paromamine in a heterologous host for the first time. This study will evoke to explore complete biosynthetic pathways of kanamycin and related aminoglycoside antibiotics.

Advances in Biochemistry and Microbial Production of Squalene and Its Derivatives

  • Ghimire, Gopal Prasad;Nguyen, Huy Thuan;Koirala, Niranjan;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.441-451
    • /
    • 2016
  • Squalene is a linear triterpene formed via the MVA or MEP biosynthetic pathway and is widely distributed in bacteria, fungi, algae, plants, and animals. Metabolically, squalene is used not only as a precursor in the synthesis of complex secondary metabolites such as sterols, hormones, and vitamins, but also as a carbon source in aerobic and anaerobic fermentation in microorganisms. Owing to the increasing roles of squalene as an antioxidant, anticancer, and anti-inflammatory agent, the demand for this chemical is highly urgent. As a result, with the exception of traditional methods of the isolation of squalene from animals (shark liver oil) and plants, biotechnological methods using microorganisms as producers have afforded increased yield and productivity, but a reduction in progress. In this paper, we first review the biosynthetic routes of squalene and its typical derivatives, particularly the squalene synthase route. Second, typical biotechnological methods for the enhanced production of squalene using microbial cell factories are summarized and classified. Finally, the outline and discussion of the novel trend in the production of squalene with several updated events to 2015 are presented.

Programmable Magnetic Actuation of Biomolecule Carriers using NiFe Stepping Stones

  • Lim, Byung-Hwa;Jeong, Il-Gyo;Anandakumar, S.;Kim, K.W.;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.363-367
    • /
    • 2011
  • We have designed, fabricated and demonstrated a novel micro-system for programmable magnetic actuation using magnetic elliptical pathways on Si substrates. Lithographically patterned soft NiFe ellipses are arranged sequentially perpendicular to each other as stepping stones for the transport of magnetic beads. We have measured the magnetization curve of the ellipsoid ($9\;{\mu}m{\times}4\;{\mu}m{\times}0.1\;{\mu}m$) elements with respect to the long and short axes of the ellipse. We found that the magnetization in the long axis direction is larger than that in the short axis direction for an applied field of ${\leq}$ 1,000 Oe, causing a force on carriers that causes them to move from one element to another. We have successfully demonstrated a micro-system for the magnetic actuation of biomolecule carriers of superparamagnetic beads (Dynabead$^{(R)}$ 2.8 ${\mu}m$) by rotating the external magnetic field. This novel concept of magnetic actuation is useful for future integrated lab-on-a-chip systems for biomolecule manipulation, separation and analysis.

Enhancement of Herboxidiene Production in Streptomyces chromofuscus ATCC 49982

  • Jha, Amit Kumar;Lamichhane, Janardan;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권1호
    • /
    • pp.52-58
    • /
    • 2014
  • Structurally, herboxidiene contains the tetrahydropyran acetic acid moiety and a side chain including a conjugated diene, and has been isolated from Streptomyces chromofuscus ATCC 49982. Its production was significantly elevated nearly 13.5-fold (0.74 g/l) in a medium supplemented with glycerol (medium No. 6A6), and was more efficacious (1.08 g/l; 19.8-fold) in fed-batch fermentation at 36 h in medium No. 6A6, from Streptomyces chromofuscus. For further enhancement, regulatory genes metK1-sp and afsR-sp from Streptomyces peucetius were overexpressed using an expression vector, pIBR25, and similarly ACCase from Streptomyces coelicolor and two genes, metK1-sp and afsR-sp, were also overexpressed using an integration vector, pSET152, under the control of the strong $ermE^*$ promoter in Streptomyces chromofuscus. Only the recombinant strains S. chromofuscus SIBR, S. chromofuscus GIBR, and S. chromofuscus AFS produced more herboxidiene than the parental strain in optimized medium No. 6A6 with an increment of 1.32-fold (0.976 g/l), 3.85-fold (2.849 g/l), and 1.7-fold(1.258 g/l) respectively.

Homology Modeling and Molecular Docking Analysis of Streptomyces peucetius CYP125A4 as C26 Monooxygenase

  • Lee, Seung-Won;Lee, Na-Rae;Lee, Ji-Hun;Oh, Tae-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1885-1889
    • /
    • 2012
  • Among 23 cytochrome P450s, CYP125A4 was proposed as a putative monooxygenase based on the high level of amino acid sequence homology (54% identity and 75% similarity) with the well characterized C27-steroid $Mycobacterium$ $tuberculosis$ CYP125A1. Utilizing MTBCYP125A1 as a template, homology modeling of SPCYP125A4 was conducted by Accelrys Discovery Studio 3.1 software. The modeled SPCYP125A4 structure with lowest energy value was subsequently assessed for its stereochemical quality and side-chain environment. The final model was generated by showing its active site through the molecular dynamics. The docking of steroids showed broad specificity of SPCYP125A4 with different orientation of ligand within active site facing the heme. One poses of C27-steroid with C26 facing the heme with distance of 3.734 ${\AA}$ from the Fe were predominant.

Homology Modeling and Docking Studies of Streptomyces peucetius CYP147F1 as Limonene Hydroxylase

  • Bhattarai, Saurabh;Liou, Kwangkyoung;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권7호
    • /
    • pp.917-922
    • /
    • 2012
  • Homology modeling of Streptomyces peucetius CYP147F1 was constructed using three cytochrome P450 structures, CYP107L1, CYPVdh, and CYPeryF, as templates. The lowest energy SPCYP147F1 model was then assessed for stereochemical quality and side-chain environment by Accelrys Discovery Studio 3.1 software. Further activesite optimization of the SPCYP147F1 was performed by molecular dynamics to generate the final SPCYP147F1 model. The substrate limonene was then docked into the model. The model-limonene complex was used to validate the active-site architecture, and functionally important residues within the substrate recognition site were identified by subsequent characterization of the secondary structure. The docking of limonene suggested that SPCYP147F1 would have broad specificity with the ligand based on the two different orientations of limonene within the active site facing to the heme. Limonene with C7 facing the heme with distance of $3.4{\AA}$ from the Fe was predominant.

천연물인 플라보노이드와 이소플라보노이드의 항산화 효과 비교연구 (Comparative Study of the Antioxidative Potential of Common Natural Flavonoids and Isoflavonoids)

  • 판데이 라메스 프리사드;코이라라 니런전;이주호;이희찬;송재경
    • 한국미생물·생명공학회지
    • /
    • 제41권3호
    • /
    • pp.367-371
    • /
    • 2013
  • 2,2'-diphenylpicrylhydrazyl ($DPPH^{\cdot}$) assay와 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid ($ABTS^+$) decolorization assay는 자연상태의 플라보노이드와 이소플라보노이드의 항산화 활성을 확인하는데 사용된다. 억제중간값(half maximal inhibitory concentration ($IC_{50}$) values)과 트롤록스당량 항산화능값(trolox equivalent antioxidant capacity (TEAC) values)은 $DPPH^{\cdot}$ assay와 $ABTS^+$ assay로 계산되었다. DPPH assay 결과, 쿼세틴(quercetin)은 가장 강한 항산화 능력을 가졌고 뒤이어 피세틴(fisetin), 7,8-디하이드록시플라본(7,8-dihydroxyflavone), 모린(morin), 캠퍼롤(kaempferol) 순이었다. 쿼세틴, 피세틴, 7,8-디하이드록시플라본은 부틸하이드록시 아니솔(butyl hydroxyl anisole)보다 더 높은 항산화 능력을 가졌다. 쿼세틴은 플라보노이드와 이소플로보노이드 중에서 TEAC 값이 가장 높았고 뒤이어 3-하이드록시플로본(3-hydroxyflavone), 피세틴, 7,8-디하이드록시플라본과 모린 순이었다. 다른 나머지 플라보노이드와 이소플라보노이드는 트롤록스 보다 더 약한 $ABTS^+$ 분해능력(scavenging potential)을 가졌다. 테스트된 13개 플라보노이드/이소플라보노이드에서 이소플라보노이드는 플라보노이드보다 매우 약한 항산화 능력을 보였다.