DOI QR코드

DOI QR Code

Heterologous Production of Paromamine in Streptomyces lividans TK24 Using Kanamycin Biosynthetic Genes from Streptomyces kanamyceticus ATCC12853

  • Nepal, Keshav Kumar (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Oh, Tae-Jin (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Sohng, Jae Kyung (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University)
  • Received : 2009.02.23
  • Accepted : 2009.03.30
  • Published : 2009.05.31

Abstract

The 2-deoxystreptamine and paromamine are two key intermediates in kanamycin biosynthesis. In the present study, pSK-2 and pSK-7 recombinant plasmids were constructed with two combinations of genes: kanABK, and kanABKF and kacA respectively from kanamycin producer Streptomyces kanamyceticus ATCC12853. These plasmids were heterologously expressed into Streptomyces lividans TK24 independently and generated two recombinant strains named S. lividans SK-2/SL and S. lividans SK-7/SL, respectively. ESI/ MS and ESI-LC/MS analysis of the metabolite from S. lividans SK-2/SL showed that the compound had a molecular mass of 163 $[M+H]^+$, which corresponds to that of 2-deoxystreptamine. ESI/MS and MS/MS analysis of metabolites from S. lividans SK-7/SL demonstrated the production of paromamine with a molecular mass of $324[M+H]^+$. In this study, we report the production of paromamine in a heterologous host for the first time. This study will evoke to explore complete biosynthetic pathways of kanamycin and related aminoglycoside antibiotics.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology

References

  1. Basnet, D.B., Oh, T.J., Vu, T.T., Stahpit, B., Liou, K., Lee, H.C., Yoo, J.C., and Sohng, J.K. (2006). Angucyclines Sch 47554 and Sch 47555 from Streptomyces sp. SCC-2136: Cloning, sequencing, and characterization. Mol. Cells 22, 154-162
  2. Fan, Q., Hunag, F., Leadlay, P.F., and Spencer, J.B. (2008). The neomycin biosynthetic gene cluster and biochemical evidence for the roles of two glycosyltransferase and a deacetylase. Org. Biomol. Chem. 6, 3306-3314 https://doi.org/10.1039/b808734b
  3. Flatt, P.M., and Mahmud, T. (2006). Biosynthesis of aminocyclitol–aminoglycoside antibiotics and related compounds. Nat. Prod. Rep. 24, 358-392 https://doi.org/10.1039/b603816f
  4. Ghimire, G.P., Oh, T.J., Liou, K., and Sohng, J.K. (2008). Identification of a Cryptic Type III Polyketide Synthase (1,3,6,8-Tetrahydroxynapthalene Synthase) from Streptomyces peucetius ATCC27952. Mol. Cells 26, 326-367
  5. Hirayama, T., Tamegai, H., Kudo, F., Kojima, K., Kakimuma, K., and Eguchi, T. (2006). Biosynthesis of 2-deoxystreptamine containing antibiotics n Streptoalloteichus hindustanus JCM 3268: Characterization of 2-deoxy-scyllo-inosose synthase. J. Antibiot. 59, 358-361 https://doi.org/10.1038/ja.2006.51
  6. Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C.J., Kieser, H.M., Lydiate, D.J., Smith, C.P., Ward, J.M., and Schrempf, H. (1985). Genetic manipulation of Streptomyces, a laboratory manual, (Norwich, UK: The John Innes Foundation)
  7. Huang, F., Haydock, S.F., Mironenko, T., Spiteller, D., Li, Y., and Spencer, J.B. (2005). The neomycin biosynthetic genes cluster of Streptomyces fradiae NCIMB 8233: characterization of an aminotransferase involved in the formation of 2-deoxystreptamine. Org. Biomol. Chem. 3, 1410-1419 https://doi.org/10.1039/b501199j
  8. Karimi, R., and Ehrenberg, M. (1994). Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and error-prone ribosome. Eur. J. Biochem. 226, 355-360 https://doi.org/10.1111/j.1432-1033.1994.tb20059.x
  9. Kharel, M.K., Basnet, D.B., Lee, H.C., Liou, K., Woo, J.S., Kim, B.G., and Sohng, J.K. (2004a). Isolation and characterization of the tobramycin biosynthetic gene cluster from Streptomyces tenebrarius. FEMS Microbiol. Lett. 230, 185-190 https://doi.org/10.1016/S0378-1097(03)00881-4
  10. Kharel, M.K., Subba, B., Basnet, D.B., Woo, J.S., Lee, H.C., Liou, K., and Sohng, J.K. (2004b). A gene cluster for biosynthesis of kanamycin from Streptomyces kanamyceticus: comparison with gentamicin biosynthetic gene cluster. Arch. Biochem. Biophys. 429, 204-214 https://doi.org/10.1016/j.abb.2004.06.009
  11. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000). Practical Streptomyces genetics, (Norwich, UK: The John Innes Foundation)
  12. Kotretsou, S.I., and Kokotou, V.C. (1998). Mass spectrometric studies on the fragmentation and structural characterization of aminoacyl derivatives of kanamycin A. Carbohydr. Res. 310, 121-127 https://doi.org/10.1016/S0008-6215(98)00169-4
  13. Kudo, F., Hosomi, Y., Tamegai, H., and Kakinuma, K. (1999). Purification and characterization of 2-deoxy-scyllo-inosose synthase derived from Bacillus circulans: A crucial carbocyclization enzyme in the biosynthesis of 2-deoxystreptamine containing aminoglycoside antibiotics. J. Antibiot. 52, 81-88 https://doi.org/10.7164/antibiotics.52.81
  14. Kudo, F., Numakura, M., Tamegai, H., Yamamoto, H., Eguchi, T., and Kakinuma, K. (2005). Extended sequence and functional analysis of the butirosin biosynthetic gene cluster in Bacillus circulans SANK 72073. J. Antibiot. 58, 373-379 https://doi.org/10.1038/ja.2005.47
  15. Llewellyn, M.N., and Spencer, J.B. (2006). Biosynthesis of 2- deoxystreptamine containing aminoglycoside antibiotics. Nat. Prod. Rep. 23, 864-874 https://doi.org/10.1039/b604709m
  16. Mai, T., Kharel, M.K., Lamichane, R., Lee, H.C., Suh, J.W., Liou, K., and Sohng, J.K. (2005). Expression of 2-deoxy-scyllo-inosose synthase (kanA) from kanamycin gene cluster in Streptomtces lividans. Biotechnol. Lett. 27, 465-470 https://doi.org/10.1007/s10529-005-2222-y
  17. Nagaya, A., Takeyama, S., and Tamegai, H. (2005). Identification of aminotransferase genes for the biosynthesis of aminoglycoside antibiotics from soil DNA. Biosci. Biotechnol. Biochem. 69, 1389-1393 https://doi.org/10.1271/bbb.69.1389
  18. Nepal, K.K., Oh, T.J., Subba, B., Yoo, J.C., and Sohng, J.K. (2009). Characterization of RbmD (glycosyltransferase in ribostamycin gene cluster) through neomycin production reconstituted from the engineered Streptomyces fradiae BS1. Mol. Cells 27, 83-88 https://doi.org/10.1007/s10059-009-0008-0
  19. Ota, Y., Tamegai, H., Kudo, F., Kuriki, H., Takeshita, A.K., Eguchi, T., and Kakinuma, K. (2000). Butirosin-biosynthetic gene cluster from Bacillus circulans. J. Antibiot. 53, 1158-1167 https://doi.org/10.7164/antibiotics.53.1158
  20. Pageni, B.P., Oh, T.J., Thuy, T.T.T., and Sohng, J.K. (2008). Characterization of a Chalcosyltransferase (gerGTII) in Dihydrochalcomycin Biosynthesis. Mol. Cells 26, 278-284
  21. Park, J.W., Hong, J.S., Parajuli, N., Koh, H.S., Park, S.R., Lee, M.O., Lim, S.K., and Yoon, Y.J. (2007). Analytical profiling of biosynthetic intermediates involved in the gentamicin pathway of Micromonospora echinospora by high-performance liquid chromatography using electrospray ionization mass spectrometric detection. Anal. Chem. 79, 4860-4869 https://doi.org/10.1021/ac070028u
  22. Park, J.W., Hong, J.S., Parajuli, N., Jung, W.S., Park, S.R., Lim, S.K., Sohng, J.K., and Yoon Y.J. (2008). Genetic dissection of the biosynthetic route to gentamicin A2 by heterologous expression of its minimal gene set. Proc. Natl. Acad. Sci. USA 105, 8399-8404 https://doi.org/10.1073/pnas.0803164105
  23. Popovic, B., Tang, X., Chirgadze, D.Y., Huang, F., Blundell, T.L., and Spencer, J.B. (2006). Crystal structures of the PLP- and PMP-bound forms of BtrR, a dual functional aminotransferase involved in butirosin biosynthesis. Proteins 65, 220-230 https://doi.org/10.1002/prot.21076
  24. Sambrook, J., and Russell, D.W. (2001). Molecular Cloning, a Labortatory Manual 3rd ed., (NY, USA; Cold Spring Harbor, Cold Spring Harbor Laboratory Press)
  25. Shrestha, R., Park, D.H., Cho, J.M., Cho, S., Wilson, C., and Hwang, I. (2008). Genetic organization of the hrp genes cluster in Erwinia pyrifoliae and characterization of HR active domains in HrpNEp protein by mutational analysis. Mol. Cells 25, 30-42
  26. Stead, D.A., and Richards, R.M. (1997). Sensitive high-performance liquid chromatography assay for aminoglycoside in biological matrices enables the direct estimation of bacterial drug uptake. J. Chromatogra. B Biomed. Sci. Appl. 693, 415-421 https://doi.org/10.1016/S0378-4347(97)00032-7
  27. Sthapit, B., Oh, T.-J., Lamichhane, R., Liou, K., Lee, H.C., Kim, C.G., and Sohng, J.K. (2004). Neocarzinostatin naphthoate synthase: an unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566, 201-206 https://doi.org/10.1016/j.febslet.2004.04.033
  28. Subba, B., Kharel, M.K., Lee, H.C., Liou, K., Kim, B.G., and Sohng, J.K. (2005). The ribostamycin biosynthetic gene cluster in Streptomyces ribosidificus: comparison with butirosin biosynthesis. Mol. Cells 20, 90-96
  29. Thapa, L.P., Oh, T.-J., Lee, H.C., Liou, K., Park, J.W., Yoon, Y.J., and Sohng, J.K. (2007). Heterologous expression of the kanamycin biosynthetic gene cluster (pSKC2) in Streptomyces venezuelae YJ003. Appl. Microbiol. Biotechnol. 253, 1096-2004
  30. Truman, A.W., Huang, F., Llewellyn, N.M., and Spencer, J.B. (2007). Charactrization of the enzyme BtrD from Bacillus circulans and revision of its functional assignment in the biosynthesis of butirosin. Angew. Chem. Int. 46, 1462-1464 https://doi.org/10.1002/anie.200604194
  31. Yokoyama, K., Numakura, M., Kudo, F., Ohmori, D., and Eguchi, T. (2007). Characterization and Mechanistic study of a radical SAM dehydrogenase in the biosynthesis of butirosin. J. Am. Chem. Soc. 129, 15147-15155 https://doi.org/10.1021/ja072481t
  32. Yokoyama, K., Yamamoto, Y., Kudo, F., and Eguchi, T. (2008). Involvement of two distinct k-acetylglucosaminyltransferases and a dual-function deacetylase in neomycin biosynthesis. ChemBioChem 9, 865-869 https://doi.org/10.1002/cbic.200700717
  33. Zhao, X.Q., Kim, K.R., Sang, L.W., Kang, S.H., Yang, Y.Y., and Suh, J.W. (2005). Genetic organization of a 50-kb gene cluster isolated from Streptomyces kanamyceticus for kanamycin biosynthesis and characterization of kanamycin acetyltransferase. J. Microbiol. Biotechnol. 15, 346-353

Cited by

  1. Biosynthetic genes for aminoglycoside antibiotics vol.62, pp.9, 2009, https://doi.org/10.1038/ja.2009.76
  2. Enzymatic activity of a glycosyltransferase KanM2 encoded in the kanamycin biosynthetic gene cluster vol.62, pp.12, 2009, https://doi.org/10.1038/ja.2009.107
  3. Functional characterization of KanP, a methyltransferase from the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus vol.165, pp.7, 2009, https://doi.org/10.1016/j.micres.2009.11.002
  4. Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation vol.7, pp.11, 2009, https://doi.org/10.1038/nchembio.671
  5. 2-Deoxystreptamine-containing aminoglycoside antibiotics: Recent advances in the characterization and manipulation of their biosynthetic pathways vol.30, pp.1, 2009, https://doi.org/10.1039/c2np20092a
  6. An Insight into the “-Omics” Based Engineering of Streptomycetes for Secondary Metabolite Overproduction vol.2013, pp.None, 2009, https://doi.org/10.1155/2013/968518
  7. Modulation of kanamycin B and kanamycin A biosynthesis in Streptomyces kanamyceticus via metabolic engineering vol.12, pp.7, 2009, https://doi.org/10.1371/journal.pone.0181971
  8. Establishment of a highly efficient conjugation protocol for Streptomyces kanamyceticus ATCC12853 vol.8, pp.6, 2009, https://doi.org/10.1002/mbo3.747
  9. Genes of Aminoglycoside Phosphotransferases in Soil Bacteria of the Streptomyces Genus vol.10, pp.6, 2009, https://doi.org/10.1134/s2079086420060055
  10. Stepwise Post‐glycosylation Modification of Sugar Moieties in Kanamycin Biosynthesis vol.22, pp.9, 2009, https://doi.org/10.1002/cbic.202000839