• 제목/요약/키워드: biomimetic sensor

검색결과 29건 처리시간 0.019초

Discriminant Analysis of Marketed Liquor by a Multi-channel Taste Evaluation System

  • Kim, Nam-Soo
    • Food Science and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.554-557
    • /
    • 2005
  • As a device for taste sensation, an 8-channel taste evaluation system was prepared and applied for discriminant analysis of marketed liquor. The biomimetic polymer membranes for the system were prepared through a casting procedure by employing polyvinyl chloride, bis (2-ethylhexyl)sebacate as plasticizer and electroactive materials such as valinomycin in the ratio of 33:66:1, and were separately attached over the sensitive area of ion-selective electrodes to construct the corresponding taste sensor array. The sensor array in conjunction with a double junction reference electrode was connected to a high-input impedance amplifier and the amplified sensor signals were interfaced to a personal computer via an A/D converter. When the signal data from the sensor array for 3 groups of marketed liquor like Maesilju, Soju and beer were analyzed by principal component analysis after normalization, it was observed that the 1st, 2nd and 3rd principal component were responsible for most of the total data variance, and the analyzed liquor samples were discriminated well in 2 dimensional principal component planes composed of the 1st-2nd and the 1st-3rd principal component.

셀룰로오스 Electro-Active Paper(EAPap)를 이용한 변형률 센서 (Strain Sensor Application Using Cellulose Electro-Active Paper(EAPap))

  • 장상동;김주형;김재환
    • 한국소음진동공학회논문집
    • /
    • 제19권9호
    • /
    • pp.915-921
    • /
    • 2009
  • Cellulose based electro-active paper(EAPap) is considered as a new smart material which has a potential to be used for biomimetic actuators and sensors. Beside of the natural abundance, cellulose EAPap is fascinating with its biodegradability, lightweight, high mechanical strength and low actuation voltage. When the external stress is applied to EAPap, it can generate the electrical output due to its piezoelectric property. Using piezoelectric behavior of EAPap, we studied the feasibility of EAPap as mechanical strain sensor applications and compared to commercial strain sensor. By measuring the induced output voltage from the thin piezoelectric cellulose EAPap under static and dynamic force, we propose cellulose EAPap film as a potential strain sensor material.

셀룰로오스 기반 Electro-Active Paper (EAPap)를 이용한 변형률 센서 응용 (Strain Sensor Application using Cellulose Electro-Active Paper (EAPap))

  • 장상동;이상우;김주형;김재환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.462-465
    • /
    • 2009
  • Cellulose based electro-active paper (EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. Beside of the natural abundance, cellulose EAPap is fascinating with its biodegradability, lightweight, high mechanical strength and low actuation voltage. An actuating mechanism of EAPap is revealed to be the combination of ion migration effect and piezoelectricity. EAPap can generate the electrical current and voltage when the mechanical stress applied due to its electro-mechanical characteristics. In this paper, we investigated the feasibility of EAPap as a mechanical strain sensor.

  • PDF

완전 이식형 인공중이의 하이브리드 음향센서 특성 평가를 위한 귀 물리모델 (A Physical Ear Model for Evaluating Hybrid-acoustic Sensor Characteristics of Fully Implantable Middle-ear Hearing Aid)

  • 신동호;문하준;김명남;조진호
    • 한국멀티미디어학회논문지
    • /
    • 제22권8호
    • /
    • pp.923-929
    • /
    • 2019
  • In this paper, biomimetic based physical ear model proposed for measuring the characteristics of a hybrid-acoustic sensor for fully implantable middle-ear hearing aid. The proposed physical ear model consists of the external ear, middle-ear, and cochlea. The physical ear model was implemented based on the anatomical structure and CT images of the human ear. To confirm the characteristics of the ear model, the vibrational characteristics of the stapes was measured after applying sound pressure to the tympanic membrane. The measured results were compared with the vibrational characteristics of the human temporal bone specified by ASTM F2504-05. Through the comparison results, the feasibility of the proposed ear model was confirmed. Then, after attaching the hybrid-acoustic sensor to the ear model, the output characteristics of the ECM and acceleration sensor were measured according to the sound pressure. The measured results were compared with previous studies using human temporal bone, and the usefulness of the proposed physical ear model was verified through the analysis results.

혈압 파형 재현을 위한 인공 대동맥 기반 모의 순환계 로봇 (Mock Circulatory Robot with Artificial Aorta for Reproduction of Blood Pressure Waveform)

  • 정재학;박용화
    • 로봇학회논문지
    • /
    • 제19권2호
    • /
    • pp.221-228
    • /
    • 2024
  • As the importance of cardiovascular health is highlighted, research on its correlation with blood pressure, the most important indicator, is being actively conducted. Therefore, extensive clinical data is essential, but the measurement of the central arterial blood pressure waveform must be performed invasively within the artery, so the quantity and quality are limited. This study suggested a mock circulatory robot and artificial aorta to reproduce the blood pressure waveform generated by the overlap of forward and reflected waves. The artificial aorta was fabricated with biomimetic silicone to mimic the physiological structure and vascular stiffness of the human. A pressurizing chamber was implemented to prevent distortion of the blood pressure waveform due to the strain-softening of biomimetic silicone. The reproduced central arterial blood pressure waveforms have similar magnitude, shape, and propagation characteristics to humans. In addition, changes in blood pressure waveform due to aging were also reproduced by replacing an artificial aorta with various stiffness. It can be expanded to construct a biosignal database and health sensor testing platform, a core technology for cardiovascular health-related research.

MEMS 기반 생체모사 음향센서 제작 및 주파수 특성 분석 (Fabrication of Biomimetic MEMS Acoustic Sensor and Analysis of Its Frequency Characteristics)

  • 허신;정영도;이영화;송원준;김완두
    • 비파괴검사학회지
    • /
    • 제31권5호
    • /
    • pp.522-528
    • /
    • 2011
  • 인간의 청각기능을 보조하거나 대체할 수 있는 차세대 인공와우기술의 개발은 기존 인공와우의 단점인 잦은 충전, 장애 노출 등을 극복하고 향상된 음감을 전달할 수 있는 기술로서 세계적으로 많은 연구를 수행하고 있다. 본 연구에서는 달팽이관의 기저막이 갖는 주파수 분리 기능 및 유모세포(haircell)의 이온채널 작용에 의한 생체 전기신호 발생 기능을 할 수 있는 PVDF(polyvinylidene fluoride) 압전 박막형 인공기저막을 설계, 제작 및 시험평가를 하고자 하였다. 생체 기저막과 유사한 주파수 분리 특성을 갖는 사다리꼴 형상의 인공기저막을 제작하고, MEMS 공정을 이용한 전극 증착 및 유체 유동이 가능한 챔버를 형성하였다. 또한 인공기저막의 거동을 측정하기 위하여 비접촉 LDV측정 장비, 스피커, 기준 마이크로폰 등을 사용하여 실험 장치를 구성하였다. 기계적 성능시험 결과, PVDF 압전박막형 인공기저막은 입사하는 음파의 주파수 분리를 잘 수행할 수 있음을 실험적으로 입증하였다.

수중 유속 및 유향의 동시 측정을 위한 이미지 분석 기술에 관한 연구 (Image Analysis for the Simultaneous Measurement of Underwater Flow Velocity and Direction)

  • 서동민;오상우;변성훈
    • 센서학회지
    • /
    • 제32권5호
    • /
    • pp.307-312
    • /
    • 2023
  • To measure the flow velocity and direction in the near field of an unmanned underwater vehicle, an optical measurement unit containing an image sensor and a phosphor-integrated pillar that mimics the neuromasts of a fish was constructed. To analyze pillar movement, which changes with fluid flow, fluorescence image analysis was conducted. To analyze the flow velocity, mean force analysis, which could determine the relationship between the light intensity of a fluorescence image and an external force, and length-force analysis, which could determine the distance between the center points of two fluorescence images, were employed. Additionally, angle analysis that can determine the angles at which pixels of a digital image change was selected to analyze the direction of fluid flow. The flow velocity analysis results showed a high correlation of 0.977 between the external force and the light intensity of the fluorescence image, and in the case of direction analysis, omnidirectional movement could be analyzed. Through this study, we confirmed the effectiveness of optical flow sensors equipped with phosphor-integrated pillars.

Low-Cost Flexible Strain Sensor Based on Thick CVD Graphene

  • Chen, Bailiang;Liu, Ying;Wang, Guishan;Cheng, Xianzhe;Liu, Guanjun;Qiu, Jing;Lv, Kehong
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850126.1-1850126.10
    • /
    • 2018
  • Flexible strain sensors, as the core member of the family of smart electronic devices, along with reasonable sensing range and sensitivity plus low cost, have rose a huge consumer market and also immense interests in fundamental studies and technological applications, especially in the field of biomimetic robots movement detection and human health condition monitoring. In this paper, we propose a new flexible strain sensor based on thick CVD graphene film and its low-cost fabrication strategy by using the commercial adhesive tape as flexible substrate. The tensile tests in a strain range of ~30% were implemented, and a gage factor of 30 was achieved under high strain condition. The optical microscopic observation with different strains showed the evolution of cracks in graphene film. Together with commonly used platelet overlap theory and percolation network theory for sensor resistance modeling, we established an overlap destructive resistance model to analyze the sensing mechanism of our devices, which fitted the experimental data very well. The finding of difference of fitting parameters in small and large strain ranges revealed the multiple stage feature of graphene crack evolution. The resistance fallback phenomenon due to the viscoelasticity of flexible substrate was analyzed. Our flexible strain sensor with low cost and simple fabrication process exhibits great potential for commercial applications.

거미의 감각기관을 모사한 초민감 균열기반 진동압력센서 (Ultrasensitive Crack-based Mechanosensor Inspired by Spider's Sensory Organ)

  • 오수연;김태일
    • 마이크로전자및패키징학회지
    • /
    • 제31권1호
    • /
    • pp.1-6
    • /
    • 2024
  • 거미는 진동감각기관을 통하여 미세한 진동까지도 감지해낸다. 뛰어난 진동 감지 능력을 활용해 먹이나 포식자가 발생시키는 진동을 감지하여 공격을 계획하거나 위협을 파악하며 생존에 활용한다. 본 논문은 거미의 진동감각기관을 모사하여 개발된 초민감 진동압력센서에 대해 기술한다. 거미가 진동을 감지하는데 사용하는 감각기관에 위치한 작은 틈에 착안하여 센서에 균열을 생성하였고, 균열의 깊이를 제어하여 외부로부터 오는 압력이나 진동을 매우 민감하게 감지할 수 있는 센서를 개발하였다. 이 센서는 10 N의 인장응력을 적용하여 2%의 변형률에서 게이지 계수가 16000에 도달한다. 이는 높은 신호대잡음비를 가져 정확하게 원하는 진동을 인식할 수 있는 소자로서 외력(압력, 진동)과 생체 신호측정 등 다양한 평가를 통해 센서의 높은 민감도를 증명하였다. 이를 통하여 생체모사 기술을 활용한 새로운 센서의 개발 및 다양한 산업 분야로의 응용 가능성을 제시한다.

원격구동 셀룰로오스 종이 작동기의 응용연구 (Wirelessly Driven Cellulose Electro-Active Paper Actuator: Application Research)

  • 김재환;양상렬;장상동;고현우;문성철;김동구;강진호
    • 대한기계학회논문집B
    • /
    • 제36권5호
    • /
    • pp.539-543
    • /
    • 2012
  • 셀룰로오스 EAPap 작동기는 생체 모방형 작동기의 하나로 생체적합하고 가볍고 비교적 낮은 전압에서도 큰 변위를 발생시킨다는 장점을 가지고 있다. 셀룰로오스를 재생하면서 셀룰로오스 파이버를 배열함으로써 압전 종이를 만들었다. 한편 셀룰로오스에 탄소나노튜브, 산화금속 나노분말, 전도성 고분자, 이온성 유체등을 물리적, 화학적으로 결합시켜 다양한 하이브리드 나노복합재를 만들었다. 본 논문에서는 셀룰로오스 EAPap 의 제조공정 및 이를 응용한 바이오센서, 화학센서, 유연트랜지스터, 그리고 작동기의 응용 디바이스에 대해 소개한다. 또한 셀룰로오스 EAPap 을 무선으로 구동하는 기술에 대해 소개한다. 이는 생체모방로봇, 정찰 등에 활용될 수 있다.