• Title/Summary/Keyword: biomass estimation

Search Result 265, Processing Time 0.026 seconds

Comparative Study on the Carbon Stock Changes Measurement Methodologies of Perennial Woody Crops-focusing on Overseas Cases (다년생 목본작물의 탄소축적 변화량 산정방법론 비교 연구-해외사례를 중심으로)

  • Hae-In Lee;Yong-Ju Lee;Kyeong-Hak Lee;Chang-Bae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.258-266
    • /
    • 2023
  • This study analyzed methodologies for estimating carbon stocks of perennial woody crops and the research cases in overseas countries. As a result, we found that Australia, Bulgaria, Canada, and Japan are using the stock-difference method, while Austria, Denmark, and Germany are estimating the change in the carbon stock based on the gain-loss method. In some overseas countries, the researches were conducted on estimating the carbon stock change using image data as tier 3 phase beyond the research developing country-specific factors as tier 2 phase. In South Korea, convergence studies as the third stage were conducted in forestry field, but advanced research in the agricultural field is at the beginning stage. Based on these results, we suggest directions for the following four future researches: 1) securing national-specific factors related to emissions and removals in the agricultural field through the development of allometric equation and carbon conversion factors for perennial woody crops to improve the completeness of emission and removals statistics, 2) implementing policy studies on the cultivation area calculation refinement with fruit tree-biomass-based maturity, 3) developing a more advanced estimation technique for perennial woody crops in the agricultural sector using allometric equation and remote sensing techniques based on the agricultural and forestry satellite scheduled to be launched in 2025, and to establish a matrix and monitoring system for perennial woody crop cultivation areas in the agricultural sector, Lastly, 4) estimating soil carbon stocks change, which is currently estimated by treating all agricultural areas as one, by sub-land classification to implement a dynamic carbon cycle model. This study suggests a detailed guideline and advanced methods of carbon stock change calculation for perennial woody crops, which supports 2050 Carbon Neutral Strategy of Ministry of Agriculture, Food, and Rural Affairs and activate related research in agricultural sector.

Critical Temperature for Early Marginal Transplanting of Japonica Rice in Korea (우리나라 자포니카 벼 품종의 조기이앙 한계온도 분석)

  • Woonho Yang;Shingu Kang;Dae-Woo Lee;Mi-Jin Chae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.246-261
    • /
    • 2023
  • We investigated critical temperature for early marginal transplanting (CT-EMT) of the contemporary japonica rice varieties in Korea through the field, pot seedling tray, and the phytotron experiments during 2020 to 2023. The lowest mean temperature for 10 days from transplanting (MT-10DFT) that resulted in earlier heading date was 12.4℃ and the highest MT-10DFT that did not show the earlier heading date was 12.0℃ in the field study when the MT-10DFT varied by changing transplanting date. The lowest MT-10DFT that induced the increased biomass but not the earlier heading date was 11.6℃ and the highest MT-10DFT that showed neither the increased biomass nor the earlier heading date was 11.4℃. Compared to the 10-day later transplanting, the dates of the first root development, initiation of the chlorophyll recovery, and the first tiller development were earlier when the MT-10DFT was 9.1℃ or higher, 10.5℃ or higher, and 11.6℃ or higher, respectively, in the pot seedling tray and field experiments. The earliness of the first tiller development was a practical index for the estimation of CT-EMT during the early growth stage of rice. The response of transplanted rice to temperature treatments with the diurnal change of 10℃ in the phytotron study was similar to that shown in the field study. The data shown for constant temperature without a diurnal change revealed that the extent of positive effects of high temperature at day-time was greater than the extent of negative effects of low temperature at night-time on the early growth of transplanted rice. It was concluded that the critical MT-10DFT for early marginal transplanting of japonica rice in the temperate environments was between 11.4 to 11.6℃ based on the plant growth and between 12.0 to 12.4℃ based on the plant development.

A Study of Organic Matter Fraction Method of the Wastewater by using Respirometry and Measurements of VFAs on the Filtered Wastewater and the Non-Filtered Wastewater (여과한 하수와 하수원액의 VFAs 측정과 미생물 호흡률 측정법을 이용한 하수의 유기물 분액 방법에 관한 연구)

  • Kang, Seong-wook;Cho, Wook-sang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.58-72
    • /
    • 2009
  • In this study, the organic matter and biomass was characterized by using respirometry based on ASM No.2d (Activated Sludge Model No.2d). The activated sludge models are based on the ASM No.2d model, published by the IAWQ(International Association on Water Quality) task group on mathematical modeling for design and operation of biological wastewater treatment processes. For this study, OUR(Oxygen Uptake Rate) measurements were made on filtered as well as non-filtered wastewater. Also, GC-FID and LC analysis were applied for the estimation of VFAs(Volatile Fatty Acids) COD(S_A) in slowly bio-degradable soluble substrates of the ASM No.2d. Therefore, this study was intended to clearly identify slowly bio-degradable dissolved materials(S_S) and particulate materials(X_I). In addition, a method capable of determining the accurate time to measure non-biodegradable COD(S_I), by the change of transition graphs in the process of measuring microbial OUR, was presented in this study. Influent fractionation is a critical step in the model calibrations. From the results of respirometry on filtered wastewater, the fraction of fermentable and readily biodegradable organic matter(S_F), fermentation products(S_A), inert soluble matter(S_I), slowly biodegradable matter(X_S) and inert particular matter(X_I) was 33.2%, 14.1%, 6.9%, 34.7%, 5.8%, respectively. The active heterotrophic biomass fraction(X_H) was about 5.3%.

Sources Apportionment Estimation of Ambient PM2.5 and Identification of Combustion Sources by Using Concentration Ratios of PAHs (대기 중 PM2.5의 오염기여도 추정 및 PAHs 농도비를 이용한 연소 오염원 확인)

  • Kim, Do-Kyun;Lee, Tae-Jung;Kim, Seong-Cheon;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.538-555
    • /
    • 2012
  • The purpose of this study was to understand $PM_{2.5}$ chemical characteristics on the Suwon/Yongin area and further to quantitatively estimate $PM_{2.5}$ source contributions. The $PM_{2.5}$ sampling was carried out by a high-volume air sampler at the Kyung Hee University-Global Campus from November, 2010 to October, 2011. The 40 chemical species were then analyzed by using ICP-AES(Ag, Ba, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V and Zn), IC ($Na^+$, $K^+$, $NH_4{^+}$, $Mg^{2+}$, $Ca^{2+}$, $NO_3{^-}$, ${SO_4}^{2-}$ and $Cl^-$), DRI/OGC (OC1, OC2, OC3, OC4, OP, EC1, EC2 and EC3) and GC-FID (acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[a] pyrene, indeno[1,2,3-cd] pyrene, benzo[g,h,i]perylene and dibenzo[a,h,]anthracene). When applying PMF model after performing proper data treatment, a total of 10 sources was identified and their contributions were quantitatively estimated. The average contribution to $PM_{2.5}$ emitted from each source was determined as follows; 26.3% from secondary aerosol source, 15.5% from soil and road dust emission, 15.3% from vehicle emission, 15.3% from illegal biomass burning, 12.2% from incineration, 7.2% from oil combustion source, 4.9% from industrial related source, and finally 3.2% from coal combustion source. In this study we used the ratios of PAHs concentration as markers to double check whether the sources were reasonably classified or not. Finally we provided basic information on the major $PM_{2.5}$ sources in order to improve the air quality in the study area.

Analysis of the Substrate Removal Characteristics of TPA Using OUR and NUR Tests, and Simulation with ASM1 (호흡률과 탈질률 실험과 ASM1을 이용한 전산모사를 통한 TPA의 기질 분해 특성 평가)

  • Jung, In-Chul;Lee, Sung-Hak;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.926-934
    • /
    • 2006
  • In this study, nitrate uptake rate(NUR) and oxygen uptake rate(OUR) tests were conducted for the assessment of application of Terephtalic acid(TPA) by-product as an alternative external carbon source for sewage treatment plant(STP). With the ASM1 installed in GPS-X the substrate removal characteristic was investigated with simulation by obtained data from NUR and OUR test. As a result, the fraction of RBDCOD(readily biodegradable COD) was mort than 90% and specific denitrification rate was observed about 8.00 mg $NO_3^-$-N/g VSS/hr that was similar to conventional external carbon source. In the next step, sensitivity analysis for heterotrophic biomass in ASM1 was conducted. Optimized parameters of ${\mu}_{max,H}$, $K_s$, ${\eta}_g$, and $b_H$ were 6.60/day, 23.3 mg/L, 0.88, and 0.54/day, respectively. Then, relative mean squared error(RMSE) was reduced to about 40%. Optimized parameters value were well corresponded with the substrate removal characteristics of high maximum and final endogenous specific OUR and high specific NUR.

Monitoring Wheat Growth by COSMO-SkyMed SAR Images (COSMO-SkyMed SAR 영상을 이용한 밀 생육 모니터링)

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyungdo;Jang, Soyeong;Lee, Hoonyol;Oh, Yisok
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.35-43
    • /
    • 2013
  • We analyzed the relationships between backscattering coefficients of wheat measured by COSMO-SkyMed SAR and biophysical measurements such as biomass, vegetation water content, and soil moisture over an entire wheat growth period. Backscattering coefficients increased until DOY 129 and then decreased along with fresh weight, dry weight, and vegetation water content. Correlation analysis between backscattering and wheat growth parameters revealed that backscatter correlated well with fresh weight (r=0.88), vegetation water content (r=0.87), and dry weight (r=0.80), while backscatter did not correlated with soil moisture (r=0.18). Prediction equations for estimation of wheat growth parameters from the backscattering coefficients were developed.

Estimation of verticle fluxes of nitrogen compounds in tidal flats of the Keum river estuary (금강하구 갯벌내 질소화합물질의 연직적인 플럭스 평가)

  • Kim Do Hee;Yang Jae Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.3-10
    • /
    • 2000
  • The main purpose of this study were to estimate the benthic fluxes of dissolved inorganic nitrogen (DIN) from the sediment and denitrification rates in tidal flats of the Keum river estuary. Sediment specimens were collected by a core sampler from three stations along the Keum river estuary in April, August and December, 1999. The sediments were composed of 1.18 %, 29.34 % and 69.49 % of gravel and sand, sand and silt, respectively. The mean ignition loss of the sediment was found 6.7 % and its Oxidation Reduction Potential (ORP) was measured -12 mV. The total hydrogen sulfides was determined about 0.26 mg/gㆍdry. The estimated outflux of ammonium was found 11.2 m mole N/m²ㆍday from the sediment, whereas -1.09 m mole N/m²ㆍday of influx was obtained for nitrate and nitrite through the incubation experiment of sediment cores. Total DIN flux was 10.2 m mole N/m²ㆍday outflux from the sediment. From the incubation experiments executed with the flux studies, mean denitrification rate was found 30.6 m mole N₂/m²ㆍday measured by the direct assay of N₂ production technique. On the basis that DIN flux and denitrification rate in sediment of tidal flat of the Keum river estuary are may be effects to control the algal biomass in the coastal environment, it seems inevitable to pay more attention to investigate the flux of DIN and denitrification rate in tidal flat of the Keum river estuary.

  • PDF

Identification of PM10 Chemical Characteristics and Sources and Estimation of their Contributions in a Seoul Metropolitan Subway Station (서울시 지하역사에서 PM10의 화학적 특성과 오염원의 확인 및 기여도 추정)

  • Park, Seul-Ba-Sen-Na;Lee, Tae-Jung;Ko, Hyun-Ki;Bae, Sung-Joon;Kim, Shin-Do;Park, Duckshin;Sohn, Jong-Ryeul;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.74-85
    • /
    • 2013
  • Since the underground transportation system is a closed environment, indoor air quality problems may seriously affect many passengers' health. The purpose of this study was to understand $PM_{10}$ characteristics in the underground air environment and further to quantitatively estimate $PM_{10}$ source contributions in a Seoul Metropolitan subway station. The $PM_{10}$ was intensively collected on various filters with $PM_{10}$ aerosol samplers to obtain sufficient samples for its chemical analysis. Sampling was carried out in the M station on the Line-4 from April 21 to 28, July 13 to 21, and October 11 to 19 in the year of 2010 and January 11 to 17 in the year of 2011. The aerosol filter samples were then analyzed for metals, water soluble ions, and carbon components. The 29 chemical species (OC1, OC2, OC3, OC4, CC, PC, EC, Ag, Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V, Zn, $Cl^-$, $NO_3{^-}$, $SO_4{^{2-}}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were analyzed by using ICP-AES, IC, and TOR after proper pretreatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the $PM_{10}$ sources and then six sources such as biomass burning, outdoor, vehicle, soil and road dust, secondary aerosol, ferrous, and brakewear related source were classified. The contributions rate of their sources in tunnel are 4.0%, 5.8%, 1.6%, 17.9%, 13.8% and 56.9% in order.

Estimation of Chemical Speciation and Temporal Allocation Factor of VOC and PM2.5 for the Weather-Air Quality Modeling in the Seoul Metropolitan Area (수도권 지역에서 기상-대기질 모델링을 위한 VOC와 PM2.5의 화학종 분류 및 시간분배계수 산정)

  • Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.36-50
    • /
    • 2015
  • The purpose of this study is to assign emission source profiles of volatile organic compounds (VOCs) and particulate matters (PMs) for chemical speciation, and to correct the temporal allocation factor and the chemical speciation of source profiles according to the source classification code within the sparse matrix operator kernel emission system (SMOKE) in the Seoul metropolitan area. The chemical speciation from the source profiles of VOCs such as gasoline, diesel vapor, coating, dry cleaning and LPG include 12 and 34 species for the carbon bond IV (CBIV) chemical mechanism and the statewide air pollution research center 99 (SAPRC99) chemical mechanism, respectively. Also, the chemical speciation of PM2.5 such as soil, road dust, gasoline and diesel vehicles, industrial source, municipal incinerator, coal fired, power plant, biomass burning and marine was allocated to 5 species of fine PM, organic carbon, elementary carbon, $NO_3{^-}$, and $SO_4{^2-}$. In addition, temporal profiles for point and line sources were obtained by using the stack telemetry system (TMS) and hourly traffic flows in the Seoul metropolitan area for 2007. In particular, the temporal allocation factor for the ozone modeling at point sources was estimated based on $NO_X$ emission inventories of the stack TMS data.

Estimation of PM10 Source Contributions on Three Cities in the Metropolitan Area by Using PMF Model (PMF 모델을 이용한 수도권 내 3개 도시에서의 PM10 오염원의 기여도 추정)

  • Lee, Tae-Jung;Huh, Jong-Bae;Yi, Seung-Muk;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.275-288
    • /
    • 2009
  • The Korean government strengthened the environmental polices to manage and enhance Metropolitan Area air quality, and also has enforced "Special Act on Seoul Metropolitan Air Quality Improvement (SASMAQI)" issued in Dec. 2004. Recently government expanded the Seoul Metropolitan Air Quality Management District (SMAQMD) to the outskirts satellite cities of Seoul area through the "Revised Law Draft of SASMAQI". The SMAQMD has been alloted the allowable emission loads to the local governments on the basis of the carrying $PM_{10}$ capacity. However, in order to establish the effective air quality control strategy for $PM_{10}$, it is necessary to understand the corresponding sources which have a potential to directly impact ambient $PM_{10}$ concentration. To deal with the situations, many receptor methodologies have been developed to identify the origins of pollutants and to determine the contributions of sources of interests. The objective of this study was to extensively identify $PM_{10}$ sources and to estimate their contributions at the metropolitan area. $PM_{10}$ samples were simultaneously collected at the 3 semi-industrialized local cities in the Seoul metropolitan area such as Hwasung-si, Paju-si, and Icheon-si sites from April 15 to May 31, 2007. The samples collected on the teflon membrane filter by one $PM_{10}$ cyclone sampler were analyzed for trace metals and soluble ions and samples on the quartz fiber filter by another sampler were analyzed for OC and EC. Source apportionment study was then performed by using a positive matrix factorization (PMF) receptor model. A total of 6 sources were identified and their contributions were estimated in each monitoring site. Contribution results on Hwasung, Paju, and Icheon sites were as follows: 33%, 27%, and 27% from soil source, 26%, 26%, and 21% from secondary aerosol source, 11%, 11%, and 12% from biomass burning, 12%, 6%, and 5% from sea salt, 7%, 15%, and 19% from industrial related source, and finally 11%, 15%, and 16% from mobile and oil complex source, respectively. This study provides information on the major sources affecting air quality in the receptor sites and thus it will help to manage the ambient air quality in the metropolitan area by establishing reasonable control strategies, especially for the anthropogenic emission sources.