• Title/Summary/Keyword: biomarker gene

Search Result 233, Processing Time 0.027 seconds

The effects of early exercise in traumatic brain-injured rats with changes in motor ability, brain tissue, and biomarkers

  • Kim, Chung Kwon;Park, Jee Soo;Kim, Eunji;Oh, Min-Kyun;Lee, Yong-Taek;Yoon, Kyung Jae;Joo, Kyeung Min;Lee, Kyunghoon;Park, Young Sook
    • BMB Reports
    • /
    • v.55 no.10
    • /
    • pp.512-517
    • /
    • 2022
  • Traumatic brain injury (TBI) is brain damage which is caused by the impact of external mechanical forces. TBI can lead to the temporary or permanent impairment of physical and cognitive abilities, resulting in abnormal behavior. We recently observed that a single session of early exercise in animals with TBI improved their behavioral performance in the absence of other cognitive abnormalities. In the present study, we investigated the therapeutic effects of continuous exercise during the early stages of TBI in rats. We found that continuous low-intensity exercise in early-stage improves the locomotion recovery in the TBI of animal models; however, it does not significantly enhance short-term memory capabilities. Moreover, continuous early exercise not only reduces the protein expression of cerebral damage-related markers, such as Glial Fibrillary Acid Protein (GFAP), Neuron-Specific Enolase (NSE), S100β, Protein Gene Products 9.5 (PGP9.5), and Heat Shock Protein 70 (HSP70), but it also decreases the expression of apoptosis-related protein BAX and cleaved caspase 3. Furthermore, exercise training in animals with TBI decreases the microglia activation and the expression of inflammatory cytokines in the serum, such as CCL20, IL-13, IL-1α, and IL-1β. These findings thus demonstrate that early exercise therapy for TBI may be an effective strategy in improving physiological function, and that serum protein levels are useful biomarkers for the predicition of the effectiveness of early exercise therapy.

Identification of Potential Prognostic Biomarkers in lung cancer patients based on Pattern Identification of Traditional Korean Medicine Running title: A biomarker based on the Korean pattern identification for lung cancer

  • Ji Hye Kim;Hyun Sub Cheong;Chunhoo Cheon;Sooyeon Kang;Hyun Koo Kim;Hyoung Doo Shin;Seong-Gyu Ko
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.35-48
    • /
    • 2023
  • Objective : We studied prognostic biomarkers discovery for lung cancer based on the pattern identification for the personalized Korean medicine. Methods : Using 30 tissue samples, we performed a whole exome sequencing to examine the genetic differences among three groups. Results : The exome sequencing identified among 23,490 SNPs germline variants, 12 variants showed significant frequency differences between Xu and Stasis groups (P<0.0005). As similar, 18 and 10 variants were identified in analysis for Xu vs. Gentleness group and Stasis vs. Gentleness group, respectively (P<0.001). Our exome sequencing also found 8,792 lung cancer specific variants and among the groups identified 6, 34, and 12 variants which showed significant allele frequency differences in the comparison groups; Xu vs. Stasis, Xu vs. Gentleness group, and Stasis vs. Gentleness group. As a result of PCA analysis, in germline data set, Xu group was divided from other groups. Analysis using somatic variants also showed similar result. And in gene ontology analysis using pattern identification variants, we found genes like as FUT3, MYCBPAP, and ST5 were related to tumorigenicity, and tumor metastasis in comparison between Xu and Stasis. Other significant SNPs for two were responsible for eye morphogenesis and olfactory receptor activity. Classification of somatic pattern identification variants showed close relationship in multicellular organism reproduction, anion-anion antiporter activity, and GTPase regulator activity. Conclusions : Taken together, our study identified 40 variants in 29 genes in association with germline difference of pattern identification groups and 52 variants in 47 genes in somatic cancer tissues.

Experimental study trends on the prevention and treatment effects of herbal medicine for gastroesophageal reflux disease (GERD) - based on Pubmed (천연물의 위식도역류질환 예방, 치료 효과에 대한 실험연구 현황 – Pubmed를 중심으로)

  • YongBin Kim;Young-Sik Kim
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.389-413
    • /
    • 2023
  • Objectives : This study aimed to review the current trends in experimental studies on the use of natural products for treatment of gastroesophageal reflux disease (GERD). Methods : Experimental studies assessing the efficacy of natural products against GERD were searched on PubMed. Articles were selected based on predefined inclusion and exclusion criteria and then analyzed for experimental methods, interventions, and result analysis techniques. Results : A total 37 studies were included in this review. Predominantly, in vivo experiments were conducted to induce GERD through surgery, involving the ligation of the pylorus and the transitional junction between the corpus and the forestomach using 7-week-old male Sprague-Dawley rats. The acute induction model, sacrificing animals after a single administration following GERD induction, was mainly used.The utilization of cell experiments was relatively infrequent, with a focus on assessing antioxidant and anti-inflammatory effects via the treatment of the RAW 264.7 cell line with lipopolysaccharides treatment. Glycyrrhizae Radix et Rhizoma, Pinelliae Tuber, Ginseng Radix and Zingiberis Rhizoma were used as single ingredients, and herbal formula, STW-5 (iberogast), Rikkunshito (六君子湯), Banhasasim-tang (半夏瀉心湯), and Hewei Jiangni granule (和胃降逆湯) were used. Outcome analysis methods encompassed Macroscopic evaluation, esophageal function assessment, blood biomarker analysis, histological examination, protein analysis, gene expression analysis, and gastric juice analysis. Proton pump inhibitors were predominantly employed as positive controls. Conclusions : This study revealed the current trends in non-clinical research evaluating natural products for GERD. Based on the results of this study, we expect that non-clinical research on clinically effective natural products will be revitalized.

Development of a Novel ATP Bioluminescence Assay Based on Engineered Probiotic Saccharomyces boulardii Expressing Firefly Luciferase

  • Ji Sun Park;Young-Woo Kim;Hyungdong Kim;Sun-Ki Kim;Kyeongsoon Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1506-1512
    • /
    • 2023
  • Quantitative analysis of adenosine triphosphate (ATP) has been widely used as a diagnostic tool in the food and medical industries. Particularly, the pathogenesis of a few diseases including inflammatory bowel disease (IBD) is closely related to high ATP concentrations. A bioluminescent D-luciferin/luciferase system, which includes a luciferase (FLuc) from the firefly Photinus pyralis as a key component, is the most commonly used method for the detection and quantification of ATP. Here, instead of isolating FLuc produced in recombinant Escherichia coli, we aimed to develop a whole-cell biocatalyst system that does not require extraction and purification of FLuc. To this end, the gene coding for FLuc was introduced into the genome of probiotic Saccharomyces boulardii using the CRISPR/Cas9-based genome editing system. The linear relationship (r2 = 0.9561) between ATP levels and bioluminescence generated from the engineered S. boulardii expressing FLuc was observed in vitro. To explore the feasibility of using the engineered S. boulardii expressing FLuc as a whole-cell biosensor to detect inflammation biomarker (i.e., ATP) in the gut, a colitis mouse model was established using dextran sodium sulfate as a colitogenic compound. Our findings demonstrated that the whole-cell biosensor can detect elevated ATP levels during gut inflammation in mice. Therefore, the simple and powerful method developed herein could be applied for non-invasive IBD diagnosis.

Bioinformatics Study and Experimental Evaluation of miR-182, and miR-34 Expression Profiles in Tuberculosis and Lung Cancer

  • Leila Alimardanian;Bahram Mohammad Soltani;Shiva Irani;Mojgan Sheikhpour
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.3
    • /
    • pp.398-408
    • /
    • 2024
  • Background: Lung cancer is one of the most dangerous cancers and tuberculosis is one of the deadliest infectious diseases in the world. Many studies have confirmed the connection between lung cancer and tuberculosis, and also the microRNAs (miRNAs) that play a major role in the development of these two diseases. This study aims to use different databases to find effective miRNAs and their role in different genes in lung and tuberculosis diseases. It also aims to determine the role of miR-34a and miR-182 in lung cancer and tuberculosis. Methods: Using the Gene Expression Omnibus (GEO) database, the influential miRNA databases were studied in the two diseases. Finally, considering bioinformatics results and literature studies, two miR-34a and miR-182 were selected. The role of these miRNAs and their target genes was carefully evaluated using bioinformatics. The expression of miRNAs in the plasma of patients with lung cancer and tuberculosis and healthy individuals was investigated. Results: According to the GEO database, miR-34a and miR-182 are miRNAs that affect tuberculosis and lung cancer. By checking the miRBase, miRcode, DIANA, miRDB, galaxy, Kyoto Encyclopedia of Genes and Genomes databases, the role of these miRNAs on genes and different molecular pathways and their effect on these miRNAs were mentioned. The results of the present study showed that the expression of miR-34a and miR-182 was lower than that of healthy people. The p-value for miR-182 was <0.0001 and for miR-34a was 0.3380. Conclusion: Reducing the expression pattern of these miRNAs indicates their role in lung cancer and tuberculosis occurrence. Therefore, these miRNAs can be used as a biomarker for prognosis, diagnosis, and treatment methods.

GABRQ expression is a potential prognostic marker for patients with clear cell renal cell carcinoma

  • Dongjun Lee;Mihyang Ha;Chae Mi Hong;Jayoung Kim;Su Min Park;Dongsu Park;Dong Hyun Sohn;Ho Jin Shin;Hak-Sun Yu;Chi Dae Kim;Chi-Dug Kang;Myoung-Eun Han;Sae-Ock Oh;Yun Hak Kim
    • Oncology Letters
    • /
    • v.18 no.6
    • /
    • pp.5731-5738
    • /
    • 2019
  • Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer. Novel biomarkers of ccRCC may provide crucial information on tumor features and prognosis. The present study aimed to determine whether the expression of γ-aminobutyric acid (GABA) A receptor subunit θ (GABRQ) could serve as a novel prognostic marker of ccRCC. GABA is the main inhibitory neurotransmitter in the brain that activates the receptor GABAA, which is comprised of three subunit isoforms: GABRA3, GABRB3 and GABRQ. A recent study reported that GABRQ is involved in the initiation and progression of hepatocellular carcinoma; however, the role of GABRQ in ccRCC remains unknown. In the present study, clinical and transcriptomic data were obtained from cohorts of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). Differential GABRQ expression levels among early (TI and II), late (TIII and IV), nonmetastatic (M0) and metastatic (M1, primary tumor) stages of ccRCC samples were then identified. Furthermore, the use of GABRQ as a prognostic gene was analyzed using Uno's C-index based on the time-dependent area under the curve (AUC), the AUC of the receiver operating characteristic curve at 5 years, the Kaplan-Meier survival curve and multivariate analysis. The survival curve analysis revealed that low GABRQ mRNA expression was significantly associated with a poor prognosis of ccRCC (P<0.001 and P=0.0012 for TCGA and ICGC data, respectively). In addition, analyses of the C-index and AUC values further supported this discriminatory power. Furthermore, the prognostic value of GABRQ mRNA expression was confirmed by multivariate Cox regression analysis. Taken together, these results suggested that GABRQ mRNA expression may be considered as a novel prognostic biomarker of ccRCC.

Noise-induced Stress Response on Cortisol, Glucose, albumin and Glucocorticoid Receptor Expression in the Japanese eel, Anguilla japonica (소음스트레스에 대한 뱀장어의 코티졸, 글루코스, 알부민과 Glucocorticoid Receptor 유전자 발현 연구)

  • Park, Young-Chul;Kang, Yong-Jin;Jeon, Hyoung-Joo;Han, Kyung-Nam;Baek, Jae-Min;Lee, Wan-Ok;Kim, Jin-Hyoung
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.6
    • /
    • pp.853-860
    • /
    • 2011
  • We measured blood plasma parameters(cortisol, glucose, albumin) and glucocorticoid receptor(GCR) gene expression level of the Japanese eel(Anguilla japonica) exposed to an explosion noise for an hour in order to evaluate the effects of noise stress and to explore the possibility of these parameters as biomarkers on noise stress for one of this valuable aquaculture species. Plasma cortisol and glucose reached high levels with significant differences compared to the control group, whereas albumin showed a low value after 1 h of exposure. In addition, tissue distribution of GCR gene expression was studied by real-time RT-PCR of ten organs(brain, eye, gill, gonad, heart, intestine, kidney, liver, muscle and skin). Liver showed the highest level of expression in the control followed by gill, muscle and intestine. A time-course study revealed induction in liver, gill, muscle and intestine after 30 min or 1 h of noise exposure.

Fibrinogen mRNA Expression Up-Regulated in Follicular Cyst of Korean Cattle (한우 난포낭종에서 증가되는 섬유소원 유전자 발현)

  • Tak, Hyun-Min;Han, Jae-Hee;Kang, Da-Won
    • Journal of Embryo Transfer
    • /
    • v.25 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • Follicular cystic ovary (FCO) is one of the major causes of reproductive failure in cattle. Genetic alterations affect the function of diverse cells and/or tissues, which could be present in cystic ovaries. A microarray analysis was performed to screen differential gene expressions in follicular cystic follicles of cattle. In this study, we hypothesized that follicular cysts may be induced by changes in ion- and transporter-related gene expression. Microarray data showed that fibrinogen-gamma (FGG) and low density lipoprotein receptor-related protein 8 (LRP8) were up-regulated, while choline transporter-like protein 4 (SLC44A4), very long-chain acyl-CoA synthetase homolog 2 (SLC27A5), annexin 8 (ANXA8), and aquaporin 4 were down-regulated in follicular cystic follicles. A semi-quantitative RT-PCR was carried out to validate DEGs altered in follicular cystic follicles. Of six DEGs, three DEGs (FGG, SLC44A4, and aquaporin 4) showed a positive correlation between microarray and semi-quantitative PCR data. We focused on FGG, among three DEGs, which was highly up-regulated in follicular cystic follicles. The FGG mRNA was upregulated by 8.4-fold and by 1.7-fold in the bovine follicular cystic follicles as judged by microarray and RT-PCR analysis, respectively. However, there was no significant changes in the expression level of FGG protein in both follicular cystic follicles and granulosa cells isolated from follicular cystic follicles by Western blot analysis. Although this study does not reveal a positive correlation between the mRNA and protein level, FGG appears to be an important biomarker in the discrimination of follicular cyst from normal ovary.

Association of NRF2 Polymorphism with Cholangiocarcinoma Prognosis in Thai Patients

  • Khunluck, Tueanjai;Kukongviriyapan, Veerapol;Puapairoj, Anucha;Khuntikeo, Narong;Senggunprai, Laddawan;Zeekpudsa, Ponsilp;Prawan, Auemduan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.299-304
    • /
    • 2014
  • Cholangiocarcinoma (CCA), a malignancy of biliary duct with a very poor prognosis, is the leading cause of cancer death in countries of the Mekong subregion. Liver fluke infection is the main etiological factor, but genetic variation has been recognized as also important in conferring susceptibility to CCA risk. Nuclear factor (erythroid derived 2)-like 2 (NRF2) is a key transcription factor in detoxification and antioxidant defense. Emerging evidence has demonstrated that genetic polymorphisms in the NRF2 gene may be associated with cancer development. The objectives of this study were to investigate the association of NRF2 genetic polymorphism with CCA risk and to evaluate the influence of the NRF2 genotype on survival time of affected patients. Single nucleotide polymorphisms (SNPs) of the NRF2 gene, including rs6726395: A/G, rs2886161: C/T, rs1806649: C/T, and rs10183914: C/T, were analyzed using TaqMan$^{(R)}$ SNP genotyping assays. Among 158 healthy northeastern Thai subjects, the allele frequencies were 41, 62, 94, and 92%, respectively. The correlation of NRF2 SNPs and CCA risk was analyzed in the 158 healthy subjects and 198 CCA patients, using unconditional logistic regression. The results showed that whereas the NRF2 SNPs were not associated with CCA risk (p>0.05), Kaplan-Meier analysis of 88 intrahepatic CCA patients showed median survival time with rs6726395 genotypes of GG and AA/AG to be $344{\pm}138$ (95%CI: 73-615) days and $172{\pm}37$ (95%CI: 100-244) days, respectively, (p<0.006). On multivariate Cox proportional hazard analysis, the GG genotype of rs6726395 was found to be associated with longer survival with a hazard ratio of 0.54 (95%CI: 0.31-0.94). In addition, non-papillary adenocarcinoma was associated with poor survival with a hazard ratio of 2.09 (95%CI: 1.16-3.75). The results suggest that the NRF2 rs6726395 polymorphism can be a potential prognostic biomarker for CCA patients.

Expression of Mycosporine-like Amino Acids Biosynthetic Genes in the Chlamydomonas sp. Exposed to Radiofrequency (Radiofrequency에 노출된 Chlamydomonas sp.의 mycosporine-like amino acids 생합성 유전자 발현)

  • Hwang, Jinik;Moh, Sang Hyun;Chang, Man;Lee, Gunsup;Lee, Juyun;Kim, Donggiun;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.4086-4092
    • /
    • 2013
  • Mycosporine-like amino acids (MAAs) are UV-absorbing substances, and diverse marine organisms have the evolved the capacity to diminished the direct and indirect damaging effects of environmental ultraviolet radiation by synthesis and accumulation of MAAs. In this study, we manufactured a radiofrequency (RF) generation device and applied to microalgal culture. $0.35{\pm}0.05$ mHz of RF was supplied to culture vessel for Chlamydomonas sp. and samples were harvested at the designated time intervals (1, 0.5, 1 and 2 hr). MAAs biosynthetic genes, dehydroquinate synthase homolog (DHQS-like) and nonribosomal peptide synthetase homolog (NRPS-like), were cloned from Chlamydomonas sp. and their gene expressions under the RF exposure were analyzed using qRT-PCR. DHQS-like and NRPS-like gene expressions of Chlamydomonas sp. exposed to RF were increased 1.46 and 1.19 fold at 1 hr, respectively. These results means that DHQS-like and NRPS-like genes can be good biomarker candidates for diagnosis of MAAs biosynthesis in the Chlamydomonas sp.