DOI QR코드

DOI QR Code

Bioinformatics Study and Experimental Evaluation of miR-182, and miR-34 Expression Profiles in Tuberculosis and Lung Cancer

  • Leila Alimardanian (Department of Biology, Science and Research Branch, Islamic Azad University) ;
  • Bahram Mohammad Soltani (Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University) ;
  • Shiva Irani (Department of Biology, Science and Research Branch, Islamic Azad University) ;
  • Mojgan Sheikhpour (Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran)
  • Received : 2023.10.23
  • Accepted : 2024.04.07
  • Published : 2024.07.31

Abstract

Background: Lung cancer is one of the most dangerous cancers and tuberculosis is one of the deadliest infectious diseases in the world. Many studies have confirmed the connection between lung cancer and tuberculosis, and also the microRNAs (miRNAs) that play a major role in the development of these two diseases. This study aims to use different databases to find effective miRNAs and their role in different genes in lung and tuberculosis diseases. It also aims to determine the role of miR-34a and miR-182 in lung cancer and tuberculosis. Methods: Using the Gene Expression Omnibus (GEO) database, the influential miRNA databases were studied in the two diseases. Finally, considering bioinformatics results and literature studies, two miR-34a and miR-182 were selected. The role of these miRNAs and their target genes was carefully evaluated using bioinformatics. The expression of miRNAs in the plasma of patients with lung cancer and tuberculosis and healthy individuals was investigated. Results: According to the GEO database, miR-34a and miR-182 are miRNAs that affect tuberculosis and lung cancer. By checking the miRBase, miRcode, DIANA, miRDB, galaxy, Kyoto Encyclopedia of Genes and Genomes databases, the role of these miRNAs on genes and different molecular pathways and their effect on these miRNAs were mentioned. The results of the present study showed that the expression of miR-34a and miR-182 was lower than that of healthy people. The p-value for miR-182 was <0.0001 and for miR-34a was 0.3380. Conclusion: Reducing the expression pattern of these miRNAs indicates their role in lung cancer and tuberculosis occurrence. Therefore, these miRNAs can be used as a biomarker for prognosis, diagnosis, and treatment methods.

Keywords

References

  1. Cohen A, Mathiasen VD, Schon T, Wejse C. The global prevalence of latent tuberculosis: a systematic review and meta-analysis. Eur Respir J 2019;54:1900655.
  2. Balgkouranidou I, Liloglou T, Lianidou ES. Lung cancer epigenetics: emerging biomarkers. Biomark Med 2013;7:49-58.
  3. Yu YY, Pinsky PF, Caporaso NE, Chatterjee N, Baumgarten M, Langenberg P, et al. Lung cancer risk following detection of pulmonary scarring by chest radiography in the prostate, lung, colorectal, and ovarian cancer screening trial. Arch Intern Med 2008;168:2326-32.
  4. Moon SM, Choi H, Kim SH, Kang HK, Park DW, Jung JH, et al. Increased lung cancer risk and associated risk factors in tuberculosis survivors: a Korean Population-Based Study. Clin Infect Dis 2023;77:1329-39.
  5. Bhatt M, Kant S, Bhaskar R. Pulmonary tuberculosis as differential diagnosis of lung cancer. South Asian J Cancer 2012;1:36-42.
  6. Couraud S, Vaca-Paniagua F, Villar S, Oliver J, Schuster T, Blanche H, et al. Noninvasive diagnosis of actionable mutations by deep sequencing of circulating free DNA in lung cancer from never-smokers: a proof-of-concept study from BioCAST/IFCT-1002. Clin Cancer Res 2014;20:4613-24.
  7. Balgkouranidou I, Chimonidou M, Milaki G, Tsarouxa EG, Kakolyris S, Welch DR, et al. Breast cancer metastasis suppressor-1 promoter methylation in cell-free DNA provides prognostic information in non-small cell lung cancer. Br J Cancer 2014;110:2054-62.
  8. Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol 2014;9:287-314.
  9. Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev 2009;28:369-78.
  10. Song L, Liu L, Wu Z, Li Y, Ying Z, Lin C, et al. TGF-β induces miR-182 to sustain NF-κB activation in glioma subsets. J Clin Invest 2012;122:3563-78.
  11. Li Y, Zhang H, Li Y, Zhao C, Fan Y, Liu J, et al. MiR-182 inhibits the epithelial to mesenchymal transition and metastasis of lung cancer cells by targeting the Met gene. Mol Carcinog 2018;57:125-36.
  12. Kalfert D, Ludvikova M, Pesta M, Ludvik J, Dostalova L, Kholova I. Multifunctional roles of miR-34a in cancer: a review with the emphasis on head and neck squamous cell carcinoma and thyroid cancer with clinical implications. Diagnostics (Basel) 2020;10:563.
  13. Kramer MF. Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol 2011;Chapter 15:Unit 15.10.
  14. Marcial-Quino J, Gomez-Manzo S, Fierro F, Vanoye-Carlo A, Rufino-Gonzalez Y, Sierra-Palacios E, et al. Stem-loop RT-qPCR as an efficient tool for the detection and quantification of small RNAs in Giardia lamblia. Genes (Basel) 2016;7:131.
  15. Abolfathi H, Sheikhpour M, Soltani BM, Fahimi H. The comparison and evaluation of the miR-16, miR-155 and miR-146a expression pattern in the blood of TB and NSCLC patients: a research paper. Gene Rep 2021;22:100967.
  16. Sheikhpour M, Shokrgozar MA, Biglari A, Pornour M, Abdolrahimi F, Poorazar Dizaji S, et al. Gene expression and in vitro pharmacogenetic studies of dopamine and serotonin gene receptors in tuberculosis. Tanaffos 2021;20:126-33.
  17. Liang HY, Li XL, Yu XS, Guan P, Yin ZH, He QC, et al. Facts and fiction of the relationship between preexisting tuberculosis and lung cancer risk: a systematic review. Int J Cancer 2009;125:2936-44.
  18. Zheng W, Blot WJ, Liao ML, Wang ZX, Levin LI, Zhao JJ, et al. Lung cancer and prior tuberculosis infection in Shanghai. Br J Cancer 1987;56:501-4.
  19. Wu CY, Hu HY, Pu CY, Huang N, Shen HC, Li CP, et al. Pulmonary tuberculosis increases the risk of lung cancer: a population-based cohort study. Cancer 2011;117:618-24.
  20. Yu YH, Liao CC, Hsu WH, Chen HJ, Liao WC, Muo CH, et al. Increased lung cancer risk among patients with pulmonary tuberculosis: a population cohort study. J Thorac Oncol 2011;6:32-7.
  21. Hammen I. Tuberculosis mimicking lung cancer. Respir Med Case Rep 2015;16:45-7.
  22. Zhang L, Liu T, Huang Y, Liu J. microRNA-182 inhibits the proliferation and invasion of human lung adenocarcinoma cells through its effect on human cortical actin-associated protein. Int J Mol Med 2011;28:381-8.
  23. Salzman DW, Nakamura K, Nallur S, Dookwah MT, Metheetrairut C, Slack FJ, et al. miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage. Nat Commun 2016;7:10954.
  24. Bandi N, Vassella E. miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol Cancer 2011;10:55.
  25. Rathod SS, Rani SB, Khan M, Muzumdar D, Shiras A. Tumor suppressive miRNA-34a suppresses cell proliferation and tumor growth of glioma stem cells by targeting Akt and Wnt signaling pathways. FEBS Open Bio 2014;4:485-95.
  26. Sun F, Wan M, Xu X, Gao B, Zhou Y, Sun J, et al. Crosstalk between miR-34a and notch signaling promotes differentiation in apical papilla stem cells (SCAPs). J Dent Res 2014;93:589-95.
  27. Yang S, Li Y, Gao J, Zhang T, Li S, Luo A, et al. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene 2013;32:4294-303.
  28. Weeraratne SD, Amani V, Teider N, Pierre-Francois J, Winter D, Kye MJ, et al. Pleiotropic effects of miR183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathol 2012;123:539-52.
  29. Zhu W, Zhou K, Zha Y, Chen D, He J, Ma H, et al. Diagnostic value of serum miR-182, miR-183, miR-210, and miR126 levels in patients with early-stage non-small cell lung cancer. PLoS One 2016;11:e0153046.
  30. Sun Y, Fang R, Li C, Li L, Li F, Ye X, et al. Hsa-mir-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro. Biochem Biophys Res Commun 2010;396:501-7.
  31. Shen J, Todd NW, Zhang H, Yu L, Lingxiao X, Mei Y, et al. Plasma microRNAs as potential biomarkers for nonsmall-cell lung cancer. Lab Invest 2011;91:579-87.
  32. Wang F, Zheng Z, Guo J, Ding X. Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol 2010;119:586-93.
  33. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008;105:10513-8.
  34. Shahsavani M, Baghbani-Arani F, Sheikhpour M. The expression profile evaluation of Mir-125b in tuberculosis and non-small cell lung cancer patients. Clin Cancer Investig J 2021;10:60.
  35. Dodd RD, Sachdeva M, Mito JK, Eward WC, Brigman BE, Ma Y, et al. Myogenic transcription factors regulate pro-metastatic miR-182. Oncogene 2016;35:1868-75.
  36. Wang M, Wang Y, Zang W, Wang H, Chu H, Li P, et al. Downregulation of microRNA-182 inhibits cell growth and invasion by targeting programmed cell death 4 in human lung adenocarcinoma cells. Tumour Biol 2014;35:39-46.
  37. Yang WB, Chen PH, Hsu T 1st, Fu TF, Su WC, Liaw H, et al. Sp1-mediated microRNA-182 expression regulates lung cancer progression. Oncotarget 2014;5:740-53.
  38. Feinberg-Gorenshtein G, Avigad S, Jeison M, Halevy-Berco G, Mardoukh J, Luria D, et al. Reduced levels of miR34a in neuroblastoma are not caused by mutations in the TP53 binding site. Genes Chromosomes Cancer 2009;48:539-43.
  39. Slabakova E, Culig Z, Remsik J, Soucek K. Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis 2017;8:e3100.