• Title/Summary/Keyword: biomarker gene

Search Result 225, Processing Time 0.024 seconds

Molecular Characterization and Expression Analysis of Adrenergic Receptor Beta 2 (ADRB2) Gene before and after Exercise in the Horse

  • Cho, Hyun-Woo;Shin, Sangsu;Song, Ki-Duk;Park, Jeong-Woong;Choi, Jae-Young;Lee, Hak-Kyo;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.686-690
    • /
    • 2015
  • The adrenergic receptor beta 2 (ADRB2) plays a role in various physiological responses of the muscle to exercise, such as contraction and relaxation. Given its important role in muscle function, we investigated the structure of the horse ADRB2 gene and its expression pattern after exercise to determine if it can serve as a putative biomarker for recovery. Evolutionary analyses using synonymous and non-synonymous mutation ratios, were compared with other species (human, chimpanzee, mouse, rat, cow, pig, chicken, dog, and cat), and revealed the occurrence of positive selection in the horse ADRB2 gene. In addition, expression analyses by quantitative polymerase chain reaction exhibited ubiquitous distribution of horse ADRB2 in various tissues including lung, skeletal muscle, kidney, thyroid, appendix, colon, spinal cord and heart, with the highest expression observed in the lung. The expression of ADRB2 in skeletal muscle was significantly up-regulated about four folds 30 minutes post-exercise compared to pre-exercise. The expression level of ADRB2 in leukocytes, which could be collected with convenience compared with other tissues in horse, increased until 60 min after exercise but decreased afterward until 120 min, suggesting the ADRB2 expression levels in leukocytes could be a useful biomarker to check the early recovery status of horse after exercise. In conclusion, we identified horse ADRB2 gene and analyzed expression profiles in various tissues. Additionally, analysis of ADBR2 gene expression in leukocytes could be a useful biomarker useful for evaluation of early recovery status after exercise in racing horses.

Disease Prediction Using Ranks of Gene Expressions

  • Kim, Ki-Yeol;Ki, Dong-Hyuk;Chung, Hyun-Cheol;Rha, Sun-Young
    • Genomics & Informatics
    • /
    • v.6 no.3
    • /
    • pp.136-141
    • /
    • 2008
  • A large number of studies have been performed to identify biomarkers that will allow efficient detection and determination of the precise status of a patient’s disease. The use of microarrays to assess biomarker status is expected to improve prediction accuracies, because a whole-genome approach is used. Despite their potential, however, patient samples can differ with respect to biomarker status when analyzed on different platforms, making it more difficult to make accurate predictions, because bias may exist between any two different experimental conditions. Because of this difficulty in experimental standardization of microarray data, it is currently difficult to utilize microarray-based gene sets in the clinic. To address this problem, we propose a method that predicts disease status using gene expression data that are transformed by their ranks, a concept that is easily applied to two datasets that are obtained using different experimental platforms. NCI and colon cancer datasets, which were assessed using both Affymetrix and cDNA microarray platforms, were used for method validation. Our results demonstrate that the proposed method is able to achieve good predictive performance for datasets that are obtained under different experimental conditions.

MOLECULAR BIOMARKER OF CADMIUM EXPOSURE IN FRESHWATER FISH: SENSITIVITY AND SPECIFICITY

  • Park, Kwangsik;Heekyung Bae;Nam, Seong-Sook;Kim, Enkyoung
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.174-174
    • /
    • 2002
  • Metallothioneins (MTs) are known to be induced by heavy metals in various organs of different species and represent a potential biomarker of aquatic contamination by heavy metals. In this work, cloning and sequencing of a metallothionein gene in crucian carp (Carassius auratus) was done and sensitivities and specificities of the gene expressions were compared.(omitted)

  • PDF

Assessment of Toxic Effects in Aquatic Environment and the Fish Cytochrome P450 1A(CYP1A) Gene (수서 환경독성 평가와 어류 Cytochrome P450 1A (CYP1A) 유전자)

  • 윤석주;김일찬;윤용달;이재성
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The CYP1A gene is one of Cytochrome P450 drug-metabolizing enzymes with dose-dependant manner of gene expression and is useful to get the information of alterations on gene expression upon environmental contaminants as well as the biomarker of environmental contamination at the specific places. In this report, we further discuss the usefulness of CYP1A gene in relation to aquatic environmental contamination at several aspects.

Gene Expression Profiling in the Nematode Caenorhabditis elegans, as a Potential Biomarker for Soil Ecotoxicology (잠재적 생체지표 발굴을 위한 토양선충 Caenorhabditis elegans에서의 유전자 발현 연구)

  • Roh, Ji-Yeon;Choi, Jin-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Monitoring toxicity levels in specific biological compartments is necessary to evaluate the ecotoxicological risk associated with soil environmental pollution. Gene expression, as potential biomarker, is increasingly used as rapid early warning systems in environmental monitoring and ecological risk assessment procedures. Various representative species are currently used for the purpose of assessing soil toxicity, however, investigations on toxicological assessments using endpoint based on gene-level have been limited. In this review, we will present the current trends in organisms and endpoints used in soil toxicity study and report gene expression related to toxicity using soil organism, and C. elegans as promising organisms for this approach.

HSP70 and HSC70 gene Expression in Chironomus Tentans (Diptera, Chironomidae) larvae Exposed to Various Environmental Pollutants: Potential Biomarker for Environmental Monitoring

  • Lee Sun Mi;Choi Jin Hee
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.1
    • /
    • pp.32-39
    • /
    • 2005
  • In order to identify potential biomarkers of environmental monitoring, we evaluated heat shock genes expressions as effects of various environmental pollutants (nonylphenol, bisphenol-A, 17a­ethynyl estradiol, bis(2-ethylhexyl)phthalate, endosulfan, paraquat dichloride, chloropyriphos, fenitrothion, cadmium chloride, lead nitrate, potassium dichromate, benzo[a]pyrene and carbon tetrachloride) on larvae of aquatic midge Chironomus tentans (Diptera, Chironomidae). Heat shock protein 70 gene expression increased in most of chemicals treated larvae compared to control. The response was rapid and sensitive to low chemical concentrations but not stressor specific. In conjunction with stressor specific biomarkers, heat shock protein 70 gene expression in Chironomus might be developed for assessing exposure to environmental stressors in the fresh water ecosystem. Considering the potential of Chironomus larvae as biomonitoring species, heat shock gene expression has a considerable potential as a sensitive biomarker for environmental monitoring in Chironomus.

  • PDF

Characterization and Expression of Chironomus riparius Alcohol Dehydrogenase Gene under Heavy Metal Stress (중금속 노출에 따른 리파리 깔다구에서의 ADH 유전자의 발현 및 특성)

  • Park, Ki-Yun;Kwak, Inn-Sil
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.2
    • /
    • pp.107-117
    • /
    • 2009
  • Metal pollution of aquatic ecosystems is a problem of economic and health importance. Information regarding molecular responses to metal exposure is sorely needed in order to identify potential biomarkers. To determine the effects of heavy metals on chironomids, the full-length cDNA of alcohol dehydrogenase (ADH3) from Chironomus riparius was determined through molecular cloning and rapid amplification of cDNA ends (RACE). The expression of ADH3 was analyzed under various cadmium and copper concentrations. A comparative and phylogenetic study among different orders of insects and vertebrates was carried out through analysis of sequence databases. The complete cDNA sequence of the ADH3 gene was 1134 bp in length. The sequence of C. riparius ADH3 shows a low degree of amino acid identity (around 70%) with homologous sequences in other insects. After exposure of C. riparius to various concentrations of copper, ADH3 gene expression significantly decreased within 1 hour. The ADH3 gene expression was also suppressed in C. riparius after cadmium exposure for 24 hour. However, the effect of cadmium on ADH3 gene expression was transient in C. riparius. The results show that the suppression of ADH3 gene by copper exposure could be used as a possible biomarker in aquatic environmental monitoring and imply differential toxicity to copper and cadmium in C. riparius larvae.

Eco-toxicogenomics Research with Fish

  • Park, Kyeong-Seo;Kim, Han-Na;Gu, Man-Bock
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.1
    • /
    • pp.17-25
    • /
    • 2005
  • There are some critical drawbacks in the use of biomarkers for a global assessment of the toxicological impacts many chemicals and environmental pollutants have, primarily due to an individual biomarker's specificity for an explicit chemical or toxicant. In other words, the biomarker-based assessment methodology used to analyze toxicological effects lacks a high-throughput capability. Therefore, eco-toxicogenomics, or the study of toxicogenomics with organisms present within a given environmental locale, has recently been introduced with the advent of the so-called "-omics" era, which began with the creation of microarray technologies. Fish are comparable with humans in their toxicological responses and thus data from toxicogenomic studies performed with fish could be applied, with appropriate tools and implementation protocols, to the evaluation of environments where human or animal health is of concern. At present, there have been very active research streams for developing expression sequence tag (EST) databases (DBs) for zebra fish and rainbow trout. Even though few reports involve toxicogenomic studies with fish, a few groups have successfully fabricated and used cDNA microarrays or oligo DNA chips when studying the toxicological impacts of hypoxia or some toxicants with fish. Furthermore, it is strongly believed that this technology can also be implemented with non-model fish. With the standardization of DNA microarray technologies and ample progress in bioinformatics and proteomic technologies, data obtained from DNA microarray technologies offer not only multiple biomarker assays or an analysis of gene expression profiles, but also a means of elucidating gene networking, gene-gene relations, chemical-gene interactions, and chemical-chemical relationships. Accordingly, the ultimate target of eco-toxicogenomics should be to predict and map the pathways of stress propagation within an organism and to analyze stress networking.