• Title/Summary/Keyword: biological waste

Search Result 519, Processing Time 0.027 seconds

Estimation of Landfill Stabilization using Carbon-based Mass Balance Evaluation

  • Chun, Seung-Kyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.2
    • /
    • pp.22-28
    • /
    • 2016
  • In order to evaluate landfill stabilization based on organic carbon, stoichiometric analysis and a biological methane potential (BMP) test based on modeling were performed at the 2nd Sudokwon Landfill Site. Mass balance analysis through a BMP test proved to be more adaptable for evaluation, and it showed that 28.9% of landfill organic carbon was expected to remain by 2046, 30 years after landfill closure. The organic carbon ratio of total landfill waste for 2046 is forecasted as 2.9% in demolition waste and 5.1% in household waste, and, if one were to consider plastic as an organic waste, the ratios would increase to 15.9% and 28.3%, respectively. Therefore, it seems that organic matter biodegradation facilitating measures such as bioreactor landfill technology and preemptive recovery of combustible waste are necessary to shorten post closure management periods and to meet the landfill stabilization guidelines more safely.

Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals

  • Joyce Mudondo;Hoe-Suk Lee;Yunhee Jeong;Tae Hee Kim;Seungmi Kim;Bong Hyun Sung;See-Hyoung Park;Kyungmoon Park;Hyun Gil Cha;Young Joo Yeon;Hee Taek Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Polyethylene terephthalate (PET) is a plastic material commonly applied to beverage packaging used in everyday life. Owing to PET's versatility and ease of use, its consumption has continuously increased, resulting in considerable waste generation. Several physical and chemical recycling processes have been developed to address this problem. Recently, biological upcycling is being actively studied and has come to be regarded as a powerful technology for overcoming the economic issues associated with conventional recycling methods. For upcycling, PET should be degraded into small molecules, such as terephthalic acid and ethylene glycol, which are utilized as substrates for bioconversion, through various degradation processes, including gasification, pyrolysis, and chemical/biological depolymerization. Furthermore, biological upcycling methods have been applied to biosynthesize value-added chemicals, such as adipic acid, muconic acid, catechol, vanillin, and glycolic acid. In this review, we introduce and discuss various degradation methods that yield substrates for bioconversion and biological upcycling processes to produce value-added biochemicals. These technologies encourage a circular economy, which reduces the amount of waste released into the environment.

Composting and trickling filter for treatment of olive mill waste

  • Li, Xinhua;Lin, Ching-Chieh;Sweeney, Daniel;Earl, Jessica;Hong, Andy
    • Advances in environmental research
    • /
    • v.2 no.2
    • /
    • pp.131-141
    • /
    • 2013
  • Agricultural practice and improper waste disposal in developing regions have resulted in environmental degradation in land and waters, for which low-cost, proven solutions are needed. We demonstrate in the laboratory the applications of composting and trickling filter techniques to treat olive mill wastes that can be implemented in the West Bank and other regions of the world. To a pomace waste sample from a California mill, we amended with saw dust (wood carbon source) and baking soda ($NaHCO_3$ alkalinity) at weight ratios of waste/wood/$NaHCO_3$ at 70:27:1 and composted it for periods of 11 and 48 days; the compost was used as an additive to potting soil for transplanting. The pomace sample was also blended into slurry and introduced to a water-circulating pond and trickling filter system (P/TF) to examine any inhibitive effect of the pomace on biological removal of the organic waste. The results showed the compost-amended potting soil supported plant growth without noticeable stress over 34 days and the P/TF system removed BOD and COD by >90% from the waste liquid within 2 days, with a first-order rate constant of 1.9 $d^{-1}$ in the pond. An onsite treatment design is proposed that promises implementation for agricultural waste disposal in developing regions.

Comparison of Biological Characteristics on the Organic Waste-treated Lysimeter Soil by RFLP, PLFA, and CLSU (RFLP, PLFA, CLSU를 이용한 폐기물연용토양의 토양미생물 특성 평가 비교)

  • Jang, Kab-Yeul;Weon, Hang-Yeon;Lee, Kang-Hyo;Kwon, Sun-Ik;Kong, Won-sik;Suh, Jang-sun;Sung, Jae-Mo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.415-418
    • /
    • 2008
  • The application of sludge wastes into agricultural fields has been increasing annually in Korea. In particular, sewage sludge application has been widely accepted in decades. Sewage sludge application aid in the recycling of essential nutrients and act as a source of organic matter improving the structure and water-holding properties of the soil. The efficient use of sludge wastes, however, requires an individual assessment of waste products. This study assessed the biological characteristics of organic waste-treated lysimeter soils and develop its indicator to assess the soil health of organic waste-treated lysimeter soils. Several analytical techniques more recently developed such as restriction fragment length polymorphism (RFLP), phospholipid fatty acid (PLFA), and community level substrate utilization (CLSU) fingerprints allow for detailed analyses of soil microbial communities. PLFA and RFLP was, therefore, used in the study to characterize the microbial communities in soil without the need to isolate individual fungi and bacteria. PLFA, RFLP and CLSU have been utilized to assess microbial characteristics of the lysimeter soils with four different sludge wastes for eight consecutive years. Each of these methods was analyzed for a different aspect of soil microbial characteristics. The study would disclose those methods yielded highly reproductive results for each soil and allow distinguishing the soils based on the structures of specific geneand PLFA-pools more than CLSU fingerprints. PLFA methods, especially, revealed the same relative similarities of the treated soils based on cluster analysis of the biological characteristics. Pig manure compost-treated soil, however, was only the same relative resemblance among the three methods. These results indicated that PLFA easily assessed the biological soil characterization.

Elimination and Utilization of Pollutants - Part I Microbiological Clarification of Industrial Waste and Its Utilization as Feed Resources - (환경오염원(環境汚染源)의 제거(除去)와 그 이용성(利用性)에 관(關)한 연구(硏究) - 제(報I)1보(第). 미생물(微生物)에 의(依)한 산업폐수(産業廢水)의 정화(淨化) 및 사료자원개발(飼料資源開發)에 개(開)하여 -)

  • Lee, Ke-Ho;Lee, Kang-Heup;Park, Sung-O
    • Applied Biological Chemistry
    • /
    • v.23 no.1
    • /
    • pp.64-72
    • /
    • 1980
  • Industrial wastes from pulp and food plants were treated with microorganisms to clarify organic waste-water and to produce cells as animal feed, and results were summarized as follows. (1) Waste-water from pulp, beer, bread yeast, and ethanol distillation plants contained $1.4{\sim}1.5%$ of total sugar, $0.25{\sim}0.35%$ nitrogen, and biological oxygen demand (BOD) was $400{\sim}25,000$, chemical oxygen demand (COD), $500{\sim}28,000$, and pH, $3.8{\sim}7.0$. The BOD and COD were highest in waste-water from ethanol distillation plants among others. (2) Bacterial and yeast counts were $4{\times}10^4-1{\times}10^9,\;2{\times}10^2-7{\times}10^4/ml$ in waste-water. (3) Bacteria grew better in pulp waste and yeasts in beer, bread yeast, and ethanol distillation waste. (4) Saccharomyces cerevisiae SAFM 1008 and Candida curvata SAFM 70 were the most suitable microorganisms for clarification of ethanol distillation waste. (5) When liquid and solid waste from ethanol distillation were treated with microbial cellulase, xylanase, and pectinase, solid waste was reduced by 36%, soluble waste was increased, and recuding sugar content was increased by 1.3 times which provided better medium than untreated waste for cultivation of yeasts. (6) Optimum growth conditions of the two species of yeast in ethanol distillation waste were pH 5.0, $30^{\circ}C$, and addition of 0.2% of urea, 0.1% of $KH_2PO_4$ and 0.02% of $MgSO_4$. (7) Minimum number of yeast for proper propagation was $1.8{\times}10^5/ml$. (8) C. curvata70 was better than cerevisae for the production of yeast cells from ethanol distillation waste treated with microbial enzymes. (9) S. cerevisiae produced 16 g of dried cell per 1,000ml of ethanol distillation waste and reduced BOD by 46%. C. curvata produced 17.6g of dried cell and reduced BOD by 52% at the same condition. (10) Yeast cells produced from the ethanol distillation waste contained 46-52% protein indicating suitability as a protein source for animal feed.

  • PDF

Ultrasonic treatment of waste livestock blood for enhancement of solubilization

  • Jeon, Yong-Woo;Kim, Hyeon-Jeong;Shin, Myung-Seop;Pak, Seo-Hyun
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.22-28
    • /
    • 2016
  • The aim of this study was to recycle the waste livestock blood as one of the waste biomass by turning proteins, the main constituent of blood, into effective biological resources like amino acid. Ultrasonic technology was applied to solubilize the proteins in the waste livestock blood. And of the multiple ultrasonic frequencies tested, 20 kHz was confirmed to yield the highest solubilization rate. The optimum pretreatment conditions were determined to be 30-min treatment at an ultrasonic irradiation density of 0.5 W/mL, which resulted in a solubilization rate of 96.01%. Also, a gel permeation chromatography (GPC) confirmed that a large amount of proteins were solubilized, and in an experiment where ultrasonic treatment was applied to kill bacteria, death rates of general bacteria and total coliforms were found to be reduced by 99.93% and 100%, respectively. Based on these results, ultrasonic technology was confirmed to be a crucial part of treating and recycling the proteins in waste livestock blood.

Estimation of Biomass Resources Potential (바이오매스 자원 잠재량 산정)

  • Lee, Joon-pyo;Park, Soon-chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • Biomass has been used for energy sources from the prehistoric age. Biomass are converted into solid, liquid or gaseous fuels and are used for heating, electricity generation or for transportation recently. Solid biofuels such as bio-chips or bio-pellet are used for heating or electricity generation. Liquid biofuels such as biodiesel and bioethanol from sugars or lignocellulosics are well known renewable transportation fuels. biogas produced from organic waste are also used for heating, generation and vehicles. Biomass resources for the production of above mentioned biofuels are classified under following 4 categories, such as forest biomass, agricultural residue biomass, livestock manure and municipal organic wastes. The energy potential of those biomass resources existing in Korea are estimated. The energy potential for dry biomass (forest, agricultural, municipal waste) were estimated from their heating value contained, whereas energy potential of wet biomass (livestock manure, food waste, waste sludge) is calculated from the biological methane potential of them on annual basis. Biomass resources potential of those 4 categories in Korea are estimated to be as follows. Forest biomass 355.602 million TOE, agricultural biomass 4.019 million TOE, livestock manure biomass 1.455 million TOE, and municipal organic waste 1.074 million TOE are available for biofuels production annually.

Evaluation of Three Feasible Biodegradation Models for Food Waste

  • Kwon, Sung-Hyun;Cho, Daechul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.32-37
    • /
    • 2022
  • Food waste is produced from food factories, food services, and home kitchens. The generated mass reached 5.4 million tons/year in 2020. The basic management technology for such waste has been biological degradation under an anaerobic environment. However, the whole process is intrinsically slow and considerably affected by the inner physicochemical properties of the waste and other surrounding conditions, which makes optimization of the process difficult. The most promising options to counter this massive generation of waste are eco-friendly treatments or recycling. As a preliminary step for these options, attempts were made to evaluate the feasibility and usability of three simulative models based on reaction kinetics. Model (A) predicted relative changes over reaction time for reactant, intermediate, and product. Overall, an increased reaction rate produced less intermediate and more product, thereby leading to a shorter total reaction time. Particle diminishing model (B) predicted reduction of the total waste mass. The smaller particles diminished faster along with the dominant effect of microbial reaction. In Model (C), long-chain cellulose was predicted to transform into reducing sugar. At a standard condition, 48% of cellulose molecules having 105 repeating units turned into reducing sugar after 100 h. Also it was found that the optimal enzyme concentration where the highest amount of remnant sugar was harvested was 1 mg L-1.

A Study on the Long-Term Integrity of Polymer Concrete for High Integrity Containers

  • Young Hwan Hwang;Mi-Hyun Lee;Seok-Ju Hwang;Jung-Kwon Son;Cheon-Woo Kim;Suknam Lim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.411-417
    • /
    • 2023
  • During the operation of a nuclear power plant (NPP), the generation of radioactive waste, including dry active waste (DAW), concentrates, spent resin, and filters, mandates the implementation of appropriate disposal methods to adhere to Korea's waste acceptance criteria (WAC). In this context, this study investigates the potential use of polymer concrete (PC) as a high-integrity container (HIC) material for solidifying and packaging these waste materials. PC is a versatile composite material comprising binding polymers, aggregates, and additives, known for its exceptional strength and chemical stability. A comprehensive analysis of PC's long-term integrity was conducted in this study. First, its compressive strength, which is crucial for ensuring the structural stability of HICs over extended periods, was evaluated. Subsequently, the resilience of PC was tested under various stress conditions, including biological, radiological, thermal, and chemical stressors. The findings of this study indicate that PC exhibits remarkable long-term properties, demonstrating exceptional stability even when subjected to diverse stressors. The results therefore underscore the potential viability of PC as a reliable material for constructing high-integrity containers, thus contributing to the safe and sustainable management of radioactive waste in NPPs.

Development of Substrate and Cultural Method for the Cultivation of Pleurotus sajor-caju (느타리 버섯(Pleurotus sajor-caju) 재배를 위한 기질 및 재배방법의 개발)

  • Hong, B.S.;Kim, S.J.;Song, C.H.;Hwang, S.Y.;Yang, H.C.
    • The Korean Journal of Mycology
    • /
    • v.20 no.4
    • /
    • pp.354-359
    • /
    • 1992
  • The effect of the addition of various vegetable oils on the mycelial growth was studied. Most vegetable oils were proved to be stimulative for the mycelial growth, and the best mycelial growth (12 mg/ml) was obtained with the addition of cotton seed oil. Several agricultural wastes i.e., rice straw, peanut hull, sawdust, rice hull, cocoa hull, coffee waste and beer waste were empolyed as substrates for sporophore production of p. sajor-caju. The biological efficiency(BE) for sporophore productions of rice straw and peanut hull were 36.4% and 32.6%, respectively. The highest yield of sporophore was obtained from the mixture of rice straw (50%) and beer waste (50%)(BE 109.6%) followed by peanut hull (50%) and beer waste (50%)(BE; 74.5%).

  • PDF