• Title/Summary/Keyword: biological tissues

Search Result 872, Processing Time 0.031 seconds

Suppression of reactive oxygen species generation as a part of antioxidative effect of plant extracts (식물추출물 항산화효능 기전의 일부로서의 활성산소 발생 억제 효과)

  • Song, Seon Beom;Chung, Gu June;Jung, Hee Jin;Jang, Jung Yoon;Chung, Hae Young;Kim, Nam Deuk;Lee, Ji-Hyeon;Min, Kyungjin;Park, Sun Yeong;Kwak, Chung Shil;Hwang, Eun Seong
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.706-714
    • /
    • 2021
  • Chemical scavenging of reactive oxygen species (ROS) is considered a major mechanism of antioxidant effects, but preventing ROS generation can be more efficient in attenuating oxidative damage. In this study, the extracts of plants, Solanum lycopersicum, Ailanthus altissima, Equisetum arvense, and Oenothera biennis, were tested to determine whether their antioxidative effects are driven by the prevention of superoxide generation from mitochondria, a major ROS generator. While all the extracts efficiently attenuated the elevation of ROS levels in human fibroblasts and inflammation-induced mice, those of S. lycopersicum, A. altissima, and O. laciniata only suppressed mitochondrial ROS generation and reduced levels of lipofuscin and lipid peroxidation. Furthermore, the extracts of A. altissima and O. laciniata extended the lifespan of fruit flies. Our results suggest that plant extracts with anti-oxidative effects differ in their ability to prevent ROS generation, which may be associated with the attenuation of oxidative damage in cells and animal tissues.

Lagerstroemia ovalifolia Exerts Anti-Inflammatory Effects in Mice of LPS-Induced ALI via Downregulating of MAPK and NF-κB Activation

  • Min, Jae-Hong;Kim, Seong-Man;Park, JI-Won;Kwon, Nam Hoon;Goo, Soo Hyeon;Ngatinem, Ngatinem;Ningsih, Sri;Paik, Jin-Hyub;Choi, Sangho;Oh, Sei-Ryang;Han, Sang-Bae;Ahn, Kyung-Seop;Lee, Jae-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1501-1507
    • /
    • 2021
  • Lagerstroemia ovalifolia Teijsm. & Binn. (LO) (crape myrtle) has reportedly been used as traditional herbal medicine (THM) in Java, Indonesia. Our previous study revealed that the LO leaf extract (LOLE) exerted anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Based on this finding, the current study aimed to evaluate the protective effects of LOLE in a mouse model of LPS-induced acute lung injury (ALI). The results showed that treatment with LPS enhanced the inflammatory cell influx into the lungs and increased the number of macrophages and the secretion of the inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) of mice. However, these effects were notably abrogated with LOLE pretreatment. Furthermore, the increase of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and monocyte chemoattractant protein-1 (MCP-1) expression in the lung tissues of mice with ALI was also reversed by LOLE. In addition, LOLE significantly suppressed the LPS-induced activation of the MAPK/NF-κB signaling pathway and led to heme oxygenase-1 (HO-1) induction in the lungs. Additionally, in vitro experiments showed that LOLE enhanced the expression of HO-1 in RAW264.7 macrophages. The aforementioned findings collectively indicate that LOLE exerts an ameliorative effect on inflammatory response in the airway of ALI mice.

Exploring differentially expressed genes related to metabolism by RNA-Seq in porcine embryonic fibroblast after insulin treatment

  • Yingjuan, Liang;Jinpeng, Wang;Xinyu, Li;Shuang, Wu;Chaoqian, Jiang;Yue, Wang;Xuechun, Li;Zhong-Hua, Liu;Yanshuang, Mu
    • Journal of Veterinary Science
    • /
    • v.23 no.6
    • /
    • pp.90.01-90.13
    • /
    • 2022
  • Background: Insulin regulates glucose homeostasis and has important effects on metabolism, cell growth, and differentiation. Depending on the cell type and physiological context, insulin signal has specific pathways and biological outcomes in different tissues and cells. For studying the signal pathway of insulin on glycolipid metabolism in porcine embryonic fibroblast (PEF), we used high-throughput sequencing to monitor gene expression patterns regulated by insulin. Objectives: The goal of our research was to see how insulin affected glucose and lipid metabolism in PEFs. Methods: We cultured the PEFs with the addition of insulin and sampled them at 0, 48, and 72 h for RNA-Seq analysis in triplicate for each time point. Results: At 48 and 72 h, 801 and 1,176 genes were differentially expressed, respectively. Of these, 272 up-regulated genes and 264 down-regulated genes were common to both time points. Gene Ontology analysis was used to annotate the functions of the differentially expressed genes (DEGs), the biological processes related to lipid metabolism and cell cycle were dominant. And the DEGs were significantly enriched in interleukin-17 signaling pathway, phosphatidylinositol-3-kinase-protein kinase B signaling pathway, pyruvate metabolism, and others pathways related to lipid metabolism by Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Conclusions: These results elucidate the transcriptomic response to insulin in PEF. The genes and pathways involved in the transcriptome mechanisms provide useful information for further research into the complicated molecular processes of insulin in PEF.

Effects of black onion vinegar on high fat diet-induced obese C57BL/6 mice model (흑양파를 이용하여 제조한 식초의 고지방식이 유도 C57BL/6 비만 동물모델에 미치는 효과)

  • Mi Suk Kim;Ji Yun Baek;Ye Jung Choi;Ki Sung Kang;Weon Taek Seo;Ji Hyun Kim;Hyun Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.313-319
    • /
    • 2022
  • Consumption of high fat diet (HFD) induces obesity by accumulating triglycerides and inflammation in the body. In the present study, we investigated the effects of black onion vinegar (BV) on HFD-induced C57BL/6 obese mice model. The HFD-fed obese mice were administered black onion juice (BJ) and BV, respectively, for 6 weeks. The HFD-fed group increased body and organ weights compared with normal control diet-induced group. However, administration of BV significantly reduced body and organ weights compared with HFD-fed group. The BJ- and BV-administered groups improved the serum lipid profiles such as total cholesterol and triglyceride, compared with HFD-fed group. In addition, BV-administered group significantly improved serum high-density lipoprotein cholesterol and low-density lipoprotein cholesterol. The BV-administered mice had increased the number and size of adipose cells in the liver and adipose tissues. The administrations of BJ and BV significantly down-regulated adipogenesis transcription factors and proinflammatory proteins in the liver compared with HFD-fed group. In particular, BV-administered group showed stronger attenuation of adipogenesis-related proteins than the BJ-administered group. Therefore, this study demonstrated that administration of BV attenuated HFD-induced obesity, in particular down-regulation of adipogenesis, and it could be developed as a functional vinegar for anti-obesity.

Plant abscission: An age-old yet ongoing challenge in future agriculture (탈리 신호전달의 메커니즘에 대한 최신 연구동향 및 미래 농업의 적용 방안)

  • Jinsu Lee
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.142-154
    • /
    • 2023
  • Plant abscission is a natural process in which plant organs or tissues undergo detachment, a strategy selected by nature for the disposal of nonessential organs and widespread dissemination of seeds and fruits. However, from an agricultural perspective, the abscission of seeds or fruits represents a major factor that reduces crop productivity and product quality. Therefore, during the crop domestication process in traditional agriculture, mutants exhibiting suppressed abscission were selected and crossbred, thereby enabling the production of modern crop varieties such as rice, tomatoes, canola, and soybeans. These crops possess a unique trait of retaining ripe fruits or seeds in contrast to disposal via abscission. During the previous century, research on quantitative trait loci along with genetic and molecular biological studies on Arabidopsis thaliana have elucidated various cell biological mechanisms, signaling pathways, and transcription regulators involved in abscission. Additionally, it has been revealed that various hormone signals, which are involved in plant growth, play crucial roles in modulating abscission activity. Researchers have developed several chemical treatments that target these hormones and signal transduction pathways to enhance crop yields. This review aimed to introduce the previously identified signal transduction pathways and pivotal regulators implicated in abscission activity. Moreover, this review will discuss the future direction of research required to investigate crop abscission mechanisms for their potential application in smart farming and other areas of agriculture, as well as areas within model systems that require extensive research.

Discovery and validation of PURA as a transcription target of 20(S)-protopanaxadiol: Implications for the treatment of cognitive dysfunction

  • Feiyan Chen;Wenjing Zhang;Shuyi Xu;Hantao Zhang;Lin Chen;Cuihua Chen;Zhu Zhu;Yunan Zhao
    • Journal of Ginseng Research
    • /
    • v.47 no.5
    • /
    • pp.662-671
    • /
    • 2023
  • Background: 20(S)-protopanaxadiol (PPD), a ginsenoside metabolite, has prominent benefits for the central nervous system, especially in improving learning and memory. However, its transcriptional targets in brain tissue remain unknown. Methods: In this study, we first used mass spectrometry-based drug affinity responsive target stability (DARTS) to identify the potential proteins of ginsenosides and intersected them with the transcription factor library. Second, the transcription factor PURA was confirmed as a target of PPD by biolayer interferometry (BLI) and molecular docking. Next, the effect of PPD on the transcriptional levels of target genes of PURA in brain tissues was determined by qRT-PCR. Finally, bioinformatics analysis was used to analyze the potential biological features of these target proteins. Results: The results showed three overlapping transcription factors between the proteomics of DARTS and transcription factor library. BLI analysis further showed that PPD had a higher direct interaction with PURA than parent ginsenosides. Subsequently, BLI kinetic analysis, molecular docking, and mutations in key amino acids of PURA indicated that PPD specifically bound to PURA. The results of qRT-PCR showed that PPD could increase the transcription levels of PURA target genes in brain. Finally, bioinformatics analysis showed that these target proteins were involved in learning and memory function. Conclusion: The above-mentioned findings indicate that PURA is a transcription target of PPD in brain, and PPD upregulate the transcription levels of target genes related to cognitive dysfunction by binding PURA, which could provide a chemical and biological basis for the study of treating cognitive impairment by targeting PURA.

Gross, organoleptic and histologic assessment of cadaveric equine heads preserved using chemical methods for veterinary surgical teaching

  • Rodrigo Romero Correa;Rubens Peres Mendes;Diego Darley Velasquez Pineros;Aymara Eduarda De Lima;Andre Luis do Valle De Zoppa;Luis Claudio Lopes Correia da Silva;Ricardo de Francisco Strefezzi;Silvio Henrique de Freitas
    • Journal of Veterinary Science
    • /
    • v.25 no.2
    • /
    • pp.29.1-29.11
    • /
    • 2024
  • Background: Preservation of biological tissues has been used since ancient times. Regardless of the method employed, tissue preservation is thought to be a vital step in veterinary surgery teaching and learning. Objectives: This study was designed to determine the usability of chemically preserved cadaveric equine heads for surgical teaching in veterinary medicine. Methods: Six cadaveric equine heads were collected immediately after death or euthanasia and frozen until fixation. Fixation was achieved by using a hypertonic solution consisting of sodium chloride, sodium nitrite and sodium nitrate, and an alcoholic solution containing ethanol and glycerin. Chemically preserved specimens were stored at low temperatures (2℃ to 6℃) in a conventional refrigerator. The specimens were submitted to gross and organoleptic assessment right after fixative solution injection (D0) and within 10, 20, and 30 days of fixation (D10, D20, and D30, respectively). Samples of tissue from skin, tongue, oral vestibule, and masseter muscle were collected for histological evaluation at the same time points. Results: Physical and organoleptic assessments revealed excellent specimen quality (mean scores higher than 4 on a 5-point scale) in most cases. In some specimens, lower scores (3) were assigned to the range of mouth opening, particularly on D0 and D10. A reduced the range of mouth opening may be a limiting factor in teaching activities involving structures located in the oral cavity. Conclusions: The excellent physical, histologic, and organoleptic characteristics of the specimens in this sample support their usability in teaching within the time frame considered. Appropriate physical and organoleptic characteristics (color, texture, odor, and flexibility) of the specimens in this study support the use of the method described for preparation of reusable anatomical specimens.

Differential Expression of NCAM-180 in the Olfactory System and Retina of the Rat

  • Hyeyoung Koo
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.259-267
    • /
    • 1999
  • The expression of the neural cell adhesion molecule-180 (NCAM-180), which accumulates at contact sites between cells and may be responsible for the stabilization of cell contacts, was studied in the olfactory system and retina of developing and adult rats. From embryonic day 12 onwards, which was the earliest stage examined, the NCAM-180 pathway directing to the presumptive olfactory bulb was observed. In later stages, olfactory neurons and fasciculating axons in the olfactory epithelium and nerve fiber layer and glomeruli of the olfactory bulb expressed NCAM-180. From postnatal day 0, immunolabelling pattern of the olfactory epithelium and olfactory bulb were the same as that during later stages. NCAM-180 immunoreactivity was present on differentiating retinal cells and persisted on those cells throughout adulthood. However, contrary to the olfactory nerve which remained detectable in the adult, the optic nerve was only transiently expressed with NCAM-180 and was no longer detectable in the adult. The presence of NCAM-180 in olfactory tissues suggests their possible role in pathfinding, differentiation, fasciculation and synaptic plasticity. The continued presence of NCAM-180 in the olfactory system examined may underlie its continuous cell turnover and regenerative capacity. The continuous expression of NCAM-180 in ganglion cells, bipolar cells and photoreceptor cells, also suggests potential regenerating capability and some plastic functions for these cells in the adult. Since the expression of NCAM-180 by the optic nerve was restricted to the period of special histogenetic events, for example, during axonal growth and synaptogenesis, it is possible that the lack of NCAM-180 in the adult optic nerve might cause a nonpermissive environment for the regeneration and result in regenerative failure of this system.

  • PDF

Rodent model for long-term maintenance and development of the viable cysticerci of Taenia saginata asiatica

  • Wang, I.C.;Chung, W.C.;Lu, S.C.;Fan, P.C.
    • Parasites, Hosts and Diseases
    • /
    • v.38 no.4
    • /
    • pp.237-244
    • /
    • 2000
  • Although oncospheres of Taenia saginata asiatica can develop into cysticerci in immunodeficiency, immunosuppressed, and normal mice, no detailed information on the development features of these cysticerci from SCID mice is available. In the present study, the tumor-like cyst was found in the subcutaneous tissues of each of 10 SCID mice after 38-244 days inoculation with 39,000 oncospheres of T. s. asiatica. These cysts weighed 2.0-9.6 gm and were 1.5-4.3 cm in diameter. The number of cysticerci were collected from these cysts ranged from 125 to 1,794 and the cysticercus recovery rate from 0.3% to 4.6%. All cysticerci were viable with a diameter of 1-6 mm and 9 abnormal ones each with 2 evaginated protoscoleces were also found. The mean length and width of scolex, protoscolex, and bladder were $477{\;}{\times}{\;}558,{\;}756{\;}{\times}{\;}727,{\;}and{\;}1,586{\;}{\times}{\;}1,615{\;}$\mu\textrm{m}$, respectively. The diameters of suckers and rostellum were $220{\mu\textrm{m}}{\;}and{\;}70\mu\textrm{m}$, respectively All cysticerci had two rows of rostellar hooks. These findings suggest that the SCID mouse model can be employed as a tool for long-term maintenance of the biological materials for advanced studies of immunodiagnosis, vaccine development, and evaluation of cestocidal drugs which would be most benefit for the good health of the livestocks.

  • PDF

Virus-induced Gene Silencing as Tool for Functional Genomics in a Glycine max

  • Jeong, Rae-Dong;Hwang, Sung-Hyun;Kang, Sung-Hwan;Choi, Hong-Soo;Park, Jin-Woo;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.158-163
    • /
    • 2005
  • Virus-induced gene silencing (VIGS) is a recently developed gene transcript suppression technique for characterizing the function of plant genes. However, efficient VIGS has only been studied in a few plant species. In order to extend the application of VIGS, we examined whether a VIGS vector based on TRV would produce recognizable phenotypes in soybean. Here, we report that VIGS using the Tobacco rattle virus (TRV) viral vector can be used in several soybean cultivars employing various agro-inoculation methods including leaf infiltration, spray inoculation, and agrodrench. cDNA fragments of the soybean phytoene desaturase(PDS) was inserted into TRV RNA-2 vector. By agrodrench, we successfully silenced the expression of PDS encoding gene in soybean. The silenced phenotype of PDS was invariably obvious 3 weeks after inoculation with the TRV-based vector. Real-time RT-PCR analyses showed that the endogenous level of GmPDS transcripts was dramatically reduced in the silenced leaf tissues. These observations confirm that the silenced phenotype is closely correlated with the pattern of tissue expression. The TRV-based VIGS using agrodrench can be applied to functional genomics in a soybean plants to study genes involved in a wide range of biological processes. To our knowledge, this is the first high frequency VIGS method in soybean plants.