Acknowledgement
The study was financially supported by National Natural Science Foundation of China (No.82204647, 82003970), Supporting project of National Natural Youth Foundation of Nanjing University of Chinese Medicine (XPT82204647).
References
- Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human transcription factors. Cell 2018;172:650-65. https://doi.org/10.1016/j.cell.2018.01.029
- Goswami S, Kareem O, Goyal RK, Mumtaz SM, Tonk RK, Gupta R, et al. Role of forkhead transcription factors of the O class (FoxO) in development and progression of Alzheimer's disease. CNS & Neurological Disorders Drug Targets 2020;19:709-21. https://doi.org/10.2174/1871527319666201001105553
- Vargas DM, De Bastiani MA, Zimmer ER, Klamt F. Alzheimer's disease master regulators analysis: search for potential molecular targets and drug repositioning candidates. Alzheimer's Research & Therapy 2018;10:59.
- Dard RF, Dahan L, Rampon C. Targeting hippocampal adult neurogenesis using transcription factors to reduce Alzheimer's disease-associated memory impairments. Hippocampus 2019;29:579-86. https://doi.org/10.1002/hipo.23052
- Catala-Solsona J, Minano-Molina AJ, Rodriguez-Alvarez J. Nr4a2 transcription factor in hippocampal synaptic plasticity, memory and cognitive dysfunction: a perspective review. Frontiers in Molecular Neuroscience 2021;14:786226.
- Chen F, Li C, Cao H, Zhang H, Lu C, Li R, et al. Identification of adenylate kinase 5 as a protein target of ginsenosides in brain tissues using mass spectrometry-based drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA) techniques. Journal of Agricultural and Food Chemistry 2022;70:2741-51. https://doi.org/10.1021/acs.jafc.1c07819
- Pan W, Xue B, Yang C, Miao L, Zhou L, Chen Q, et al. Biopharmaceutical characters and bioavailability improving strategies of ginsenosides. Fitoterapia 2018;129:272-82. https://doi.org/10.1016/j.fitote.2018.06.001
- Xu ZL, Chen G, Liu X, Xie D, Zhang J, Ying Y. Effects of ginsenosides on memory impairment in propofol-anesthetized rats. Bioengineered 2022;13:617-23. https://doi.org/10.1080/21655979.2021.2012407
- Wang Q, Sun LH, Jia W, Liu XM, Dang HX, Mai WL, et al. Comparison of ginsenosides Rg1 and Rb1 for their effects on improving scopolamine-induced learning and memory impairment in mice. Phytotherapy Research : PTR 2010;24:1748-54. https://doi.org/10.1002/ptr.3130
- Yang R, Jiang X, He X, Liang D, Sun S, Zhou G. Ginsenoside Rb1 improves cognitive impairment induced by insulin resistance through cdk5/p35-NMDAR-IDE pathway. BioMed Research International 2020;2020:3905719.
- Cui L, Wu SQ, Zhao CA, Yin CR. Microbial conversion of major ginsenosides in ginseng total saponins by Platycodon grandiflorum endophytes. Journal of Ginseng Research 2016;40:366-74. https://doi.org/10.1016/j.jgr.2015.11.004
- Chen F, Chen L, Liang W, Zhang Z, Li J, Zheng W, et al. Identification and confirmation of 14-3-3 z as a novel target of ginsenosides in brain tissues. Journal of Ginseng Research 2021;45:465-72. https://doi.org/10.1016/j.jgr.2020.12.007
- Musende AG, Eberding A, Wood CA, Adomat H, Fazli L, Hurtado-Coll A, et al. A novel oral dosage formulation of the ginsenoside aglycone protopanaxadiol exhibits therapeutic activity against a hormone-insensitive model of prostate cancer. Anti-cancer Drugs 2012;23:543-52. https://doi.org/10.1097/CAD.0b013e32835006f5
- Chen C, Wang L, Cao F, Miao X, Chen T, Chang Q, et al. Formulation of 20(S)-protopanaxadiol nanocrystals to improve oral bioavailability and brain delivery. International Journal of Pharmaceutics 2016;497:239-47. https://doi.org/10.1016/j.ijpharm.2015.12.014
- Lu C, Dong L, Lv J, Wang Y, Fan B, Wang F, et al. 20(S)-protopanaxadiol (PPD) alleviates scopolamine-induced memory impairment via regulation of cholinergic and antioxidant systems, and expression of Egr-1, c-Fos and c-Jun in mice. Chemico-biological Interactions 2018;279:64-72. https://doi.org/10.1016/j.cbi.2017.11.008
- Lu C, Lv J, Dong L, Jiang N, Wang Y, Fan B, et al. The protective effect of 20(S)-protopanaxadiol (PPD) against chronic sleep deprivation (CSD)-induced memory impairments in mice. Brain Research Bulletin 2018;137:249-56. https://doi.org/10.1016/j.brainresbull.2017.12.012
- Ren YS, Li HL, Piao XH, Yang ZY, Wang SM, Ge YW. Drug affinity responsive target stability (DARTS) accelerated small molecules target discovery: principles and application. Biochemical Pharmacology 2021;194:114798.
- Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, et al. Target identification using drug affinity responsive target stability (DARTS). Proceedings of the National Academy of Sciences of the United States of America 2009;106:21984-9. https://doi.org/10.1073/pnas.0910040106
- Friman T. Mass spectrometry-based Cellular Thermal Shift Assay (CETSA®) for target deconvolution in phenotypic drug discovery. Bioorganic & Medicinal Chemistry 2020;28:115174.
- Kanai Y, Dohmae N, Hirokawa N. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 2004;43:513-25. https://doi.org/10.1016/j.neuron.2004.07.022
- Chen F, Zhu K, Chen L, Ouyang L, Chen C, Gu L, et al. Protein target identification of ginsenosides in skeletal muscle tissues: discovery of natural small-molecule activators of muscle-type creatine kinase. Journal of Ginseng Research 2020;44:461-74. https://doi.org/10.1016/j.jgr.2019.02.005
- Pai MY, Lomenick B, Hwang H, Schiestl R, McBride W, Loo JA, et al. Drug affinity responsive target stability (DARTS) for small-molecule target identification. Methods in Molecular Biology (Clifton, NJ) 2015;1263:287-98. https://doi.org/10.1007/978-1-4939-2269-7_22
- Lu C, Fan L, Zhang PF, Tao WW, Yang CB, Shang EX, et al. A novel P38a MAPK activator Bruceine A exhibits potent anti-pancreatic cancer activity. Computational and Structural Biotechnology Journal 2021;19:3437-50. https://doi.org/10.1016/j.csbj.2021.06.011
- Molitor L, Bacher S, Burczyk S, Niessing D. The molecular function of PURA and its implications in neurological diseases. Frontiers in Genetics 2021;12:638217.
- Lomenick B, Jung G, Wohlschlegel JA, Huang J. Target identification using drug affinity responsive target stability (DARTS). Current Protocols in Chemical Biology 2011;3:163-80. https://doi.org/10.1002/9780470559277.ch110180
- Yang Z, Kuboyama T, Tohda C. A systematic strategy for discovering a therapeutic drug for Alzheimer's disease and its target molecule. Frontiers in Pharmacology 2017;8:340.
- Sun J, Prabhu N, Tang J, Yang F, Jia L, Guo J, et al. Recent advances in proteome-wide label-free target deconvolution for bioactive small molecules. Medicinal Research Reviews 2021;41:2893-926. https://doi.org/10.1002/med.21788
- Johnson EM, Daniel DC, Gordon J. The pur protein family: genetic and structural features in development and disease. Journal of Cellular Physiology 2013;228:930-7. https://doi.org/10.1002/jcp.24237
- Daniel DC, Johnson EM. PURA, the gene encoding Pur-alpha, member of an ancient nucleic acid-binding protein family with mammalian neurological functions. Gene 2018;643:133-43. https://doi.org/10.1016/j.gene.2017.12.004
- Barbe MF, Krueger JJ, Loomis R, Otte J, Gordon J. Memory deficits, gait ataxia and neuronal loss in the hippocampus and cerebellum in mice that are heterozygous for Pur-alpha. Neuroscience 2016;337:177-90. https://doi.org/10.1016/j.neuroscience.2016.09.018
- Khalili K, Del Valle L, Muralidharan V, Gault WJ, Darbinian N, Otte J, et al. Puralpha is essential for postnatal brain development and developmentally coupled cellular proliferation as revealed by genetic inactivation in the mouse. Molecular and Cellular Biology 2003;23:6857-75. https://doi.org/10.1128/MCB.23.19.6857-6875.2003
- Tanaka AJ, Bai R, Cho MT, Anyane-Yeboa K, Ahimaz P, Wilson AL, et al. De novo mutations in PURA are associated with hypotonia and developmental delay. Cold Spring Harbor Molecular Case Studies 2015;1:a000356.
- Xu Z, Poidevin M, Li X, Li Y, Shu L, Nelson DL, et al. Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America 2013;110:7778-83. https://doi.org/10.1073/pnas.1219643110
- Shi X, Ren S, Zhang B, Guo S, He W, Yuan C, et al. Analysis of the role of Pura in the pathogenesis of Alzheimer's disease based on RNA-seq and ChIP-seq. Scientific Reports 2021;11:12178.
- Cheung HN, Dunbar C, Morotz GM, Cheng WH, Chan HY, Miller CC, et al. FE65 interacts with ADP-ribosylation factor 6 to promote neurite outgrowth. official publication of the Federation of American Societies for Experimental Biology FASEB Journal 2014;28:337-49. https://doi.org/10.1096/fj.13-232694
- Borroni V, Barrantes FJ. Homomeric and heteromeric α7 nicotinic acetylcholine receptors in health and some central nervous system diseases. Membranes 2021:11.
- Elitt MS, Barbar L, Shick HE, Powers BE, Maeno-Hikichi Y, Madhavan M, et al. Suppression of proteolipid protein rescues Pelizaeus-Merzbacher disease. Nature 2020;585:397-403. https://doi.org/10.1038/s41586-020-2494-3
- Wang Y, Zhang M, Moon C, Hu Q, Wang B, Martin G, et al. The APP-interacting protein FE65 is required for hippocampus-dependent learning and long-term potentiation. Learning & Memory (Cold Spring Harbor, NY) 2009;16:537-44. https://doi.org/10.1101/lm.1499309