• Title/Summary/Keyword: biological tissue

Search Result 1,373, Processing Time 0.023 seconds

MicroRNA controls of cellular senescence

  • Suh, Nayoung
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.493-499
    • /
    • 2018
  • Cellular senescence is a state of permanent cell-cycle arrest triggered by different internal and external stimuli. This phenomenon is considered to be both beneficial and detrimental depending on the cell types and biological contexts. During normal embryonic development and after tissue injury, cellular senescence is critical for tissue remodeling. In addition, this process is useful for arresting growth of tumor cells, particularly during early onset of tumorigenesis. However, accumulation of senescent cells decreases tissue regenerative capabilities and induces inflammation, which is responsible for cancer and organismal aging. Therefore cellular senescence has to be tightly regulated, and dysregulation might lead to the aging and human diseases. Among many regulators of cellular senescence, in this review, I will focus on microRNAs, small non-coding RNAs playing critical roles in diverse biological events including cellular senescence.

An Experimental Study for the Relationship of Photon Flux Path ann Layered Properties of Biological Tissue with S- D Separation (S-D간격 변화에 따른 광양자의 경로와 생체조직의 계층성에 대한 실험적 연구)

  • 고한우
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.35-40
    • /
    • 1994
  • A probe was designed to study the relationship of photon flux path and layered properties of bilogical tissue. The result shows that different wavelengths have different flux path and maximum reflectance position with separation. The source-detector separations on maximum reflectance of IR and GR were 7.5 mm and 2.5 mmm each other and layered properties of tissue can be discriminated bye the change of S-D separation using designed probe.

  • PDF

Hydroxyapatite-Based Biomaterials for Hard Tissue Applications

  • Kim Hae-Won;Kim Hyoun-Ee
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.319-330
    • /
    • 2005
  • Over the past few decades, much effort has been made to improve the mechanical and biological performance of HA, in order to extend its range of applications. As a major inorganic component of human hard tissues, hydroxyapatite bioceramic is regarded as being one of the most biocompatible materials. Numerous in vitro and in vivo studies have confirmed its excellent bioactivity, osteoconductivity and bone forming ability. However, because of its poor mechanical properties, its use in hard tissue applications has been restricted to those areas in which it can be used in the form of small sized powders/granules or in the non-load bearing sites. A number of researchers have focused on improving the mechanical and biological performance of HA, as well as on the formulation of hybrid and composite systems in order to extend its range of applications. In this article, we reviewed our recent works on HA-based biomaterials; i) the strengthening of HA with ceramic oxides, ii) HA-based bioactive coatings on metallic implants, iii) HA-based porous scaffolds and iv) HA-polymer hybrids/composites.

A Pressure Applied Low-Level Laser Probe to Enhance Laser Photon Density in Soft Tissue (생체조직내 레이저 광 밀도 향상을 위한 압력 인가형 저출력 레이저 프로브)

  • Yeo, Chang-Min;Park, Jung-Hwan;Son, Tae-Yoon;Lee, Yong-Heum;Jung, Byung-Jo
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.18-22
    • /
    • 2009
  • Laser has been widely used in various fields of medicine. Recently, noninvasive low-level laser therapeutic medical devices have been introduced in market. However, low-level laser cannot deliver enough photon density to expect positive therapeutic results in deep tissue layer due to the light scattering property in tissue. In order to overcome the limitation, this study was aimed to develop a negative pressure applied low-level laser probe to optimize laser transmission pattern and therefore, to improve photon density in soft tissue. In order to evaluate the possibility of clinical application of the developed laser probe, ex-vivo experiments were performed with porcine skin samples and laser transmissions were quantitatively measured as a function of tissue compression. The laser probe has an air suction hole to apply negative pressure to skin, a transparent plastic body to observe variations of tissue, and a small metallic optical fiber guide to support the optical fiber when negative pressure was applied. By applying negative pressure to the laser probe, the porcine skin under the metallic optical fiber guide is compressed down and, at the same time, low-level laser is emitted into the skin. Finally, the diffusion images of laser in the sample were acquired by a CCD camera and analyzed. Compared to the peak intensity without the compression, the peak intensity of laser increased about $2{\sim}2.5$ times and FWHM decreased about $1.67{\sim}2.85$ times. In addition, the laser peak intensity was positively and linearly increased as a function of compression. In conclusion, we verified that the developed low-level laser probe can control the photon density in tissue by applying compression, and therefore, its potential for clinical applications.

Measurement of Absorption and Scattering Coefficients of Biological Tissues by Time-Resolved Reflectance Method (시간 분해 반사율에 의한 생체조직의 흡수계수와 산란계수 측정)

  • Jeon, Kye-Jin;Park, Seung-Han;Kim, Ung;Yoon, Gil-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.499-505
    • /
    • 1997
  • A non-invasive technique to measure absorption and scattering coefficients was investigated The reflected backscattered light from the surface of phantom and biological tissue was obtained by using a time-correlated single photon counting system in pico-second time domain. The absorption and scattering coefficients were acquired by the time of peak and asymptotic behavior of the time-resolved reflectance curve and agreed well the ones that is obtained with deconvolution method It was found that the approximation method was good for biological medium to calculate optical properties due to its convenience and accuracy.

  • PDF

Molecular identification of fruit bats, natural host of Nipah virus in Bangladesh, based on DNA barcode

  • Md. Maharub Hossain Fahim;Walid Hassan;Afia Afsin;Md. Mahfuzur Rahman;Md. Tanvir Rahman;Sang Jin Lim;Yeonsu Oh;Yung Chul Park;Hossain Md. Faruquee;Md. Mafizur Rahman
    • Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.163-172
    • /
    • 2024
  • Background: Fruit bats are natural carriers of Nipah virus (NiV). The primary objective of this study is to identify potential reservoir species in a selected geographic regions. It is necessary to determine an accurate species identification of the associated reservoir bat species distributed in a specific region. Results: In this study, we collected 20 different bat specimens from the NiV-prone area of the Kushtia district. Among these, 14 were tissue samples (BT-1-14) and six were fecal samples (BF-1-6). We used the mitochondrial gene cytochrome b, one of the most abundant and frequently used genetic markers, for polymerase chain reaction amplification and sequencing. Out of the 20 samples, 12 tissue samples and 2 fecal samples were successfully amplified and sequenced. However, two tissue samples and four fecal samples yielded chimeric sequences, rendering them unsuitable for annotation. The sequences of the successfully amplified samples were compared to those deposited in the National Center for Biotechnology Information database using basic local alignment search tool to identify the bat specimen collected. The study identified six different bat species using both morphological and genetic data, which may carriers of the NiV. Conclusions: Our results suggest that additional research should be conducted to gather more information on fruit bats from different localities across the country. The study contributes to the establishment of appropriate measures for NiV carrying disease control and management.

Identification of Luteovirus Nucleotide Sequences in Mild Yellow-Edge Diseased Strawberry Plants

  • Shaban Montasser, Magdy;Al-Awadhi, Husain;Hadidi, Ahmed
    • The Plant Pathology Journal
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 2002
  • The availability of nucleotide sequences of the coat protein gene of Potato leafroll virus (PLRV) permitted the construction of DNA primers that were utilized for cDNA synthesis. Polymerase chain reaction (PCR) products of a 487 bp. and approximately 500 bp DNA fragments were amplified from nucleic acid extracts of PLRV-infected tissue and strawberry mild yellow-edge (SMYE) diseased strawberry tissue, respectively. The amplified DNA fragments were further differentiated by hybridization analysis with a CDNA probe for the coat protein gene of PLRV and restriction fragment length polymorphism (RFLP) analysis. These results suggest that a luteovirus is associated with the SMYE disease.

Physiologically Based Pharmacokinetic (PBPK) Modeling in Neurotoxicology

  • Kim, Chung-Sim
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.135-136
    • /
    • 1995
  • Resent advances in computer technology have introduced a sophisticated capability for computing the biological fate of toxicants in a biological system. This methodology, which has drastically altered risk assessment skill in toxicology, is designed using all the mechanistic information, and all claim better accuracy with extrapolating capability Iron animal to people than conventional pharmacokinetic methods. Biologically based mathematical models in which the specific mechanistic steps governing tissue disposition(pharmacokinetics) and toxic action (pharmacodynamics) of chemicals are constructed in quantitative terms by a set of equations loading to prediction of the outcome of specific toxicological experiments by computer simulation. pharmacokinetic and pharmacodynamic models are useful in risk assessment because their mechanistic biological basis permits the high-to-low dose, route to route and interspecies extrapolation of the tissue disposition and toxic action of chemicals.

  • PDF

Recent Progress in Study and Development of Polymeric Scaffolds for Tissue Regeneration (조직재생을 위한 고분자 지지체의 최근 연구개발 동향)

  • Joung, Yoon-Ki;Park, Ki-Dong;Park, Kwi-Deok;Han, Dong-Keun
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.255-266
    • /
    • 2008
  • In tissue engineering, scaffolds play an important role in the growth of cells to 3-D organs or tissues. For the success of tissue engineering, they should be mimicked to meet the requirements of natural extracellular matrix (ECM) in the body, such as mechanical properties, adhesiveness, porosity, biodegradability, and growth factor release, etc. Contrary to other materials, polymeric materials are adequate to engineer scaffolds for tissue engineering because controlling the structure and the ratio of components and designing various shapes and size are possible. In this review, the importance, major characteristics, processes, and recent examples of polymeric scaffolds for tissue engineering applications are discussed.

The Role of Biomechanics in Tissue Engineering (조직공학에서 생체역학의 역할)

  • Park, Kwi-Deok
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1458-1460
    • /
    • 2008
  • Tissue engineering is an interdisciplinary field that utilizes the principles of engineering and life sciences toward the creation of biological substitutes. Traditionally, major components of tissue engineering are cells, scaffolds, growth factors and recently biomechanical aspects have been given much attention. A large number of studies have reported that mechanical signals are of particular interest in either encouraging or inhibiting cellular responses. In tissue engineering, cell adhesion is a very important step, because quality of adhesion may determine a cell fate in the future. Elasticity of cell-adhesive substrate is found critical in regulating stem cell differentiation. Cells exert different contractile forces for cell migration, depending on substrate mechanics. Though tissue engineering is very interactive with diverse expertise, for a breakthrough, principles of biomechanics in tissue and cell level needs to be fully understood.

  • PDF