• Title/Summary/Keyword: biological pollutants

Search Result 298, Processing Time 0.026 seconds

Analysis of Dioxins and Furans from Bottom Ash Produced in an Municipal Solid Waste Incinerator (도시 소각로 시설의 고형 쓰레기 연소 후 생성된 바닥재 시료에 대한 다이옥신과 퓨란류의 분석)

  • Chang, Yoon-Seok;Hong, JongKi;Kim, Jin-Young
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.513-523
    • /
    • 1995
  • Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) are the most concerned toxic organic pollutants to human. Because of their extremely high toxicity and uncertain genotoxic potential, their determination in environmental and biological samples is of great interest. Municipal solid waste incinerator facilities have been reported as the major contributors of dioxins and furans to the environment, and their formation from combustion is a universal phenomenon, everywhere. In this study dioxins and furans were analyzed from the bottom ash produced during combustion in an municipal waste incinerator located in Seoul. The EPA method was modified for sample pretreatment: the soxhlet method was used for extraction and clean-up procedures were performed by using silica and basic alumina, excluding active-carbon. The extract was then analyzed by HRGC/HRMS. A general trend of increase in the amounts of 6∼7 chlorine-substituted dioxins and furans was observed. Total dioxins, furans and 2,3,7,8-TCDD were determined as 8.05 ng/g, 4.75 ng/g, and 6.93 pg/g, respectively.

  • PDF

DFT Calculation on the Electron Affinity of Polychlorinated Dibenzo-p-dioxins

  • Lee, Jung-Eun;Choi, Won-Yong;Mhin, Byung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.792-796
    • /
    • 2003
  • Polychlorinated dibenzo-p-dioxins (PCDDs) are extremely toxic and persistent environmental pollutants. Their chemical reactivities and other physicochemical/biological properties show a strong dependence on the chlorination pattern. With increasing the number of chlorines, dioxin congeners become more electronegative and gain higher electron affinities. The vertical electron affinities (VEA) are related with the LUMO energies of neutral molecules. LUMO energies of all PCDD congeners were calculated at the B3LYP/6-31G** level and those of some selected congeners at the level of B3LYP/6-311G**//B3LYP/6-31G** and B3LYP/cc-pvtz/ /B3LYP/6-31G**. The total energies of neutral and anionic species for dibenzo-p-dioxins (DD), 1469-TCDD, 2378-TCDD, and OCDD were calculated at the level of B3LYP/6-31G**, B3LYP/aug-cc-pvdz, and B3LYP/ aug-cc-pvtz//B3LYP/6-31G**. By using the four congeners with D2h symmetry as reference molecules, we could estimate VEA (B3LYP/aug-cc-pvdz) of 75 PCDD congeners based on the linear correlations between LUMO energy and VEA (B3LYP/6-31G**) and between VEA (B3LYP/6-31G**) and VEA (B3LYP/aug-ccpvtz// B3LYP/6-31G**). Results show that all PCDDs with the number of Cl ≥ 3 have positive electron affinities. The PCDD electron affinity values provided in this work can be a useful data set in understanding the congener-specific reactivities of dioxins in various environmental media.

A Study on Antibody Producing by Intoxication of Cadmium Chloride or Lead Acetate in Rat (카드뮴 및 납화합물 중독에 의한 혈액학적 소견과 면양 적혈구에 해한 항체생산 세포수에 미치는 영향)

  • Chung, Yong;Jung, Sung-Kun;Kwon, Sook-Pyo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.15 no.1
    • /
    • pp.89-94
    • /
    • 1982
  • Among the environmental pollutants, cadmium and lead compounds may impair human health. These compounds may inhibit the biological metabolic function of human body and may furthermore cause the disease directly or indirectly. This study was undertaken to investigate the effects of the immune response by intoxication of cadmium chloride and lead acetate. Cadmium chloride (8.8mg/kg, in saline 10ml) and lead acetate (15mg/kg, in saline 10ml) were administered by intraperitoneal injection. After 3 weeks, the rats were intoxicated with the above chemicals and immunized with sheep RBC. After 4 weeks, the immune response of rat spleen cells was measured by the Jerne's technique. The results were obtained as follows; 1. There was no change in leukocyte counts by the intoxication of cadmium chloride or lead acetate. 2. Cadmium chloride or lead acetate reduced hemoglobin contents for most intoxicated and immunized groups. 3. Hematocrits were decreased by the intoxication of cadmium chloride or lead acetate significantly. 4. It was determined that total protein, A/G (Albumin/Globulin), ${\alpha}-,\;{\beta}-\;and\;{\gamma}$-globulins in rat serum were not changed. 5. Intoxication by cadmium chloride or lead acetate reduced the number of hemolytic plaque to the sheep RBC in rat spleen cells. Therefore, antibody producing of rat spleen cells was suppressed by the intoxication of cadmium chloride and lead acetate.

  • PDF

Assessment of Water Pollution by the discharged water of the Abandended Mine

  • Kim, Hee-Joung;Yang, Jae-E.;Lee, Jai-Young;Park, Beang-Kil;Choi, Sang-Il;Jun, Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.167-174
    • /
    • 2004
  • Several metalliferous and coal mines, including Myungjin, Seojin and Okdong located at the upper watershed of Okdong stream, were abandoned or closed since 1988 due to the mining industry promotion policy and thus disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in water pollution in the downstream areas. AMD and waste effluents from the closed coal mines were very strongly acidic showing pH ranges of 2.7 to 4.5 and had a high level of total dissolved solid (TDS) showing the ranges of 1,030 to 1,947 mg/L. Also heavy metal concentrations in these samples such as Fe, Cu, Cd and anion such as sulfate were very high. These parameters of AMD and effluents were considered to be highly polluted as compared to those in the main stream area of the Okdong river and be major pollutants for water and soil in tile downstream area. Pollution indices of the surface water at the upper stream of Okdong river where AMD of the abandoned coal mines was flowed into main stream were in the ranges of 16.3 to 47.1. On the other hand, those at the mid stream where effluents from tailing dams and coal mines flowed into main stream were in tile ranges of 10.6 to 19.5. However, those at the lower stream were ranged from 10.6 to 14.9 These results indicated that mining wastes such as AMD and effluents from the closed mines were tile major source to water pollution at the Okdong stream areas.

  • PDF

The Effect of Exposure Factors on the Concentration of Heavy Metals in Residents Near Abandoned Metal Mines (일부 폐금속광산 주변지역 중금속 노출요인이 지역주민 체내 중금속농도 및 생체지표에 미치는 영향)

  • Kim, Sang-Hoo;Cho, Yong-Min;Choi, Seung-Hyun;Kim, Hae-Joon;Choi, Jae-Wook
    • Journal of Preventive Medicine and Public Health
    • /
    • v.44 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • Objectives: This study assessed the factors that have an influence on the residents exposed to heavy metals, and we utilized the findings to establish the proper management of abandoned metal mines in the future. Methods: For a total of 258 residents who lived close to abandoned mines in Gangwon-province and Gyeonggi-province, the exposure factors and biomarkers in their blood and urine were comparatively analyzed via multiple regression analysis. Results: The blood levels of lead and mercury and the cadmium levels in urine were found to be higher in the study group than that in the average Korean. For the blood levels of heavy metals according to each exposure factor, all of them were found to be significantly higher in both of the group residing for a longer period of time and the group living closer to the source of pollutants. Multiple regression analysis disclosed that all the heavy metals, except lead, in their blood were significantly reduced in proportion to the increased distance of inhabitancy from the mines. Their other biomarkers were within the normal ranges. Conclusions: We found that the distance between the residential village and the mines was a factor that affects the blood level of heavy metals in the villagers. This finding could be an important factor when developing a management model for the areas that surround abandoned metal mines. (ED note: I much like this important study.)

Effect of pH on soil bacterial diversity

  • Cho, Sun-Ja;Kim, Mi-Hee;Lee, Young-Ok
    • Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.75-83
    • /
    • 2016
  • Background: In order to evaluate the effect of pH, known as a critical factor for shaping the biogeographical microbial patterns in the studies by others, on the bacterial diversity, we selected two sites in a similar geographical location (site 1; north latitude 35.3, longitude 127.8, site 2; north latitude 35.2, longitude 129.2) and compared their soil bacterial diversity between them. The mountain soil at site 1 (Jiri National Park) represented naturally acidic but almost pollution free (pH 5.2) and that at site 2 was neutral but exposed to the pollutants due to the suburban location of a big city (pH 7.7). Methods: Metagenomic DNAs from soil bacteria were extracted and amplified by PCR with 27F/518R primers and pyrosequenced using Roche 454 GS FLX Titanium. Results: Bacterial phyla retrieved from the soil at site 1 were more diverse than those at site 2, and their bacterial compositions were quite different: Almost half of the phyla at site 1 were Proteobacteria (49 %), and the remaining phyla were attributed to 10 other phyla. By contrast, in the soil at site 2, four main phyla (Actinobacteria, Bacteroidetes, Proteobacteria, and Cyanobacteria) composed 94 %; the remainder was attributed to two other phyla. Furthermore, when bacterial composition was examined on the order level, only two Burkholderiales and Rhizobiales were found at both sites. So depending on pH, the bacterial community in soil at site 1 differed from that at site 2, and although the acidic soil of site 1 represented a non-optimal pH for bacterial growth, the bacterial diversity, evenness, and richness at this site were higher than those found in the neutral pH soil at site 2. Conclusions: These results and the indices regarding diversity, richness, and evenness examined in this study indicate that pH alone might not play a main role for bacterial diversity in soil.

Differentially Expressed Genes by Methylmercury in Neuroblastoma cell line using suppression subtractive hybridization (SSH) and cDNA Microarray

  • Kim, Youn-Jung;Chang, Suk-Tai;Yun, Hye-Jung;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.187-187
    • /
    • 2003
  • Methylmercury (MeHg), one of the heavy metal compounds, can cause severe damage to the central nervous system in humans. Many reports have shown that MeHg is poisonous to human body through contaminated foods and has released into the environment. Despite many studies on the pathogenesis of MeHg-induced central neuropathy, no useful mechanism of toxicity has been established so far. In this study, two methods, cDNA Microarray and SSH, were performed to assess the expression profile against MeHg and to identify differentially expressed genes by MeHg in neuroblastoma cell line. TwinChip Human-8K (Digital Genomics) was used with total RNA from SH-SY5Y (human neuroblastoma cell line) treated with solvent (DMSO) and 6.25 uM (IC50) MeHg. And we performed forward and reverse SSH method on mRNA derived from SH-SY5Y treated with DMSO and MeHg (6.25 uM). Differentially expressed cDNA clones were sequenced and were screened by dot blot and ribonuclease protection assay to confirm that individual clones indeed represent differentially expressed genes. These sequences were identified by BLAST homology search to known genes or expressed sequence tags (ESTs). Analysis of these sequences may provide an insight into the biological effects of MeHg in the pathogenesis of neurodegenerative disease and a possibility to develop more efficient and exact monitoring system of heavy metals as environmental pollutants.

  • PDF

Study on Simulation of Runoff and Nitrogen for Application of LM3V Model in South Korea (LM3V 지면모델의 국내 적용성 평가를 위한 유출량 및 질소 모의 연구)

  • Jung, Chung Gil;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.1-15
    • /
    • 2017
  • Eutrophication of surface waters is of concern worldwide, because it can result in many undesirable water-quality and ecological problems, such as hypoxic 'dead' zones and harmful algal blooms, both associated with considerable economic costs. In this study, we used LSM (Land Surface Model) to simulate nitrogen in five major rivers in the Southern Korean Peninsula. The main objective of this research was to enhance nitrogen data for input of LM3V model in South Korea. Input data for nitrogen fluxes were categorized into three sections including agriculture fertilizer, livestock manure, atmosphere deposition, biological fixation, and sewage pollutants were used as the nitrogen input. For using LM3V model, the nitrogen input data were regenerated by considering states of agriculture and industry in South Korea at a $1/8^{\circ}$ resolution. Then, we simulated stream/river flows and N loads throughout the entire drainage networks in South Korea at a $1/8^{\circ}$ resolution. By using the same parameters for the entire country ($100,210km^2$), composed of 5 river basins with varying climate and land use, the model simulates spatial (11 sites) and temporal (1999~2010) patterns of flows and nitrate-N loads are resonable by comparing observed flow and nitrate-N loads. The r (Pearson's linear correlation) for water temperature, flow and nitrate-N at river were 080~0.93, 0.62~0.92 and 0.5~0.9 respectively. Based on enhanced N input data and model results, we find that LM3V model as land surface model can be applied in South Korea with interaction of atmosphere and land conditions.

Economical Ventilation Effectiveness to Reduce Hazardous Chemical Emissions for a Nail-Salon Worker

  • KWON, Woo-Taeg;JUNG, Min-Jae;LEE, Woo-Sik;KWON, Lee-Seung;SO, Young-Jin
    • Journal of Distribution Science
    • /
    • v.17 no.7
    • /
    • pp.65-76
    • /
    • 2019
  • Purpose - The purpose of this study is to investigate economical ventilation effectiveness to reduce hazardous materials exposure and damage of workers by analyzing exposure amount of noxious substances under various ventilation conditions of nail salon for indoor environments. Research design, data, and methodology - This study was carried out with cooperation of Nail shop located in SeongNam city to involve an analysis of the environmental impact indoor air quality, pollutant exposure and economical cost-effectiveness in the nail workplace. The hazardous substances were PM-10(Particulate Matter-10㎛), VOCs(Volatile Organic Compounds) and Formaldehyde, which are the major materials of nail workplace. Results - PM-10 is reduced by about 60% with air cleaner, forced artificial ventilation by 32%, and natural ventilation by about 12%. TVOCs and Formaldehyde showed similar efficiency (80~100%) after natural ventilation and ventilation after 60 minutes. The removal efficiencies of VOCs and formaldehyde were similar to those of natural ventilation and mechanical ventilation system. However, in case of dust, natural ventilation was reduced by artificial ventilation system due to inflow of external dust during natural ventilation. Conclusions - If the pollution degree of outdoor air is not high, air volume is high, and natural ventilation is performed when the air conditioning and heating system is not operated. Even at the end of the work, it keeps operating for 60 minutes to remove the pollutants generated. Results of this analysis demonstrated that the worker environment can be improved by adopting institutional legislation and guidelines for ventilation.

Comparison of Bacterial Biomass and Community of Granular Activated Carbon with or without UV Pre-treatment Process (UV 전처리 유무에 따른 입상활성탄의 세균 생체량 및 군집 구조 비교)

  • Lim, Jaewon;Kim, Seoyong;Kim, Jeongyong;Kim, Tae Ue
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.12
    • /
    • pp.64-76
    • /
    • 2017
  • Biolgical activated carbon (BAC) processes are known to effectively remove organic pollutants in raw water, and biomass and attached bacterial species play an important role in removing process. In the present study, changes of bacterial biomass in granular activated carbon (GAC) process according to the depth and operating period were investigated. In addition, changes of bacterial biomass were also confirmed after UV exposure prior to the GAC process. Results from this this study showed that the bacterial biomass was decreased dependently according to the depth of GAC process. In case of UV pre-treatment, the bacterial biomass was declined significantly over the period of operation. However, changes in bacterial community were not shown during operation period without UV pre-treatment process. In conclusion, findings from this study may provide the useful information about the management of BAC process.