• Title/Summary/Keyword: biological pathways

Search Result 702, Processing Time 0.036 seconds

Insulin Like Growth Factor Binding Protein-5 Regulates Excessive Vascular Smooth Muscle Cell Proliferation in Spontaneously Hypertensive Rats via ERK 1/2 Phosphorylation

  • Lee, Dong Hyup;Kim, Jung Eun;Kang, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.157-162
    • /
    • 2013
  • Insulin-like growth factor binding proteins (IGFBPs) are important components of insulin growth factor (IGF) signaling pathways. One of the binding proteins, IGFBP-5, enhances the actions of IGF-1, which include the enhanced proliferation of smooth muscle cells. In the present study, we examined the expression and the biological effects of IGFBP-5 in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). The levels of IGFBP-5 mRNA and protein were found to be higher in the VSMC from SHR than in those from WKY. Treatment with recombinant IGFBP-5-stimulated VSMC proliferation in WKY to the levels observed in SHR. In the VSMCs of WKY, incubation with angiotensin (Ang) II or IGF-1 dose dependently increased IGFBP-5 protein levels. Transfection with IGFBP-5 siRNA reduced VSMC proliferation in SHR to the levels exhibited in WKY. In addition, recombinant IGFBP-5 significantly up-regulated ERK1/2 phosphorylation in the VSMCs of WKY as much as those of SHR. Concurrent treatment with the MEK1/2 inhibitors, PD98059 or U0126 completely inhibited recombinant IGFBP-5-induced VSMC proliferation in WKY, while concurrent treatment with the phosphatidylinositol-3 kinase inhibitor, LY294002, had no effect. Furthermore, knockdown with IGFBP-5 siRNA inhibited ERK1/2 phosphorylation in VSMC of SHR. These results suggest that IGFBP-5 plays a role in the regulation of VSMC proliferation via ERK1/2 MAPK signaling in hypertensive rats.

Potential Influence of Climate Change on Shellfish Aquaculture System in the Temperate Region

  • Jo, Qtae;Hur, Young Baek;Cho, Kee Chae;Jeon, Chang Young;Lee, Deok Chan
    • The Korean Journal of Malacology
    • /
    • v.28 no.3
    • /
    • pp.277-291
    • /
    • 2012
  • Aquaculture is challenged by a number of constraints with future efforts towards sustainable production. Global climate change has a potential damage to the sustainability by changing environmental surroundings unfavorably. The damaging parameters identified are water temperature, sea level, surface physical energy, precipitation, solar radiation, ocean acidification, and so on. Of them, temperature, mostly temperature elevation, occupies significant concern among marine ecologists and aquaculturists. Ocean acidification particularly draws shellfish aquaculturists' attention as it alters the marine chemistry, shifting the equilibrium towards more dissolved CO2 and hydrogen ions ($H^+$) and thus influencing signaling pathways on shell formation, immune system, and other biological processes. Temperature elevation by climate change is of double-sidedness: it can be an opportunistic parameter besides being a generally known damaging parameter in aquaculture. It can provide better environments for faster and longer growth for aquaculture species. It is also somehow advantageous for alleviation of aquaculture expansion pressure in a given location by opening a gate for new species and aquaculture zone expansion northward in the northern hemisphere, otherwise unavailable due to temperature limit. But in the science of climate change, the ways of influence on aquaculture are complex and ambiguous, and hence are still hard to identify and quantify. At the same time considerable parts of our knowledge on climate change effects on aquaculture are from the estimates from data of fisheries and agriculture. The consequences may be different from what they really are, particularly in the temperature region. In reality, bivalves and tunicates hung or caged in the longline system are often exposed to temperatures higher than those they encounter in nature, locally driving the farmed shellfish into an upper tolerable temperature extreme. We review recent climate change and following environment changes which can be factors or potential factors affecting shellfish aquaculture production in the temperate region.

Studies on Gene Expression of Yukmijihwang-tang using High-throughput Gene Expression Analysis Techniques (대규모 유전자 분석 기법을 이용한 육미지황원의 유전자 발현 연구)

  • Kang, Bong-Joo;Kim, Yun-Taik;Cho, Dong-Wuk
    • Korean Journal of Oriental Medicine
    • /
    • v.8 no.2 s.9
    • /
    • pp.95-107
    • /
    • 2002
  • Yukmijihwang-tang(YM) is a noted herbal prescription in Chinese and Korean traditional medicines, and it has been known to reinforce the vital essence and has been widely used for a variety of disease such as stroke, osteoporosis, anti-tumor, and hypothyrodism. Regarding its traditional use, YM has been known to reinforce the Yin (vital essence) of liver and kidney. Also it has been known to reinforce nutrition and biological function in brain. Recently, studies suggested that YM increase antioxidant activities and exert the protective effect against oxidant-induced liver cell injury. We investigated the high-throughput gene expression analysis on the Yukmijihwang-tang administrated in SD rats. Microarray data were validated on a limited number of genes by semiquantitative RT-PCR and Western blot analyses. The recent availability of microarrays provides an attractive strategy for elaborating an unbiased molecular profile of large number of genes in drug discovery This experimental approach offers the potential to identify molecules or cellular pathways not previously associated with herbal medicine. Total RNA from normal control brain and Yukmijihwang-tang administrated brain were hybridized to microarrays containing 10,000 rat genes. The 52 genes were found to be up-regulated(twice or more) excluding EST gene. The nine genes were found to be down-regulated(twice or more) excluding EST gene. Gene array technology was used to identify for the first time many genes expression pathway analysis that arecell cycle pathway, apoptosis pathway, electron transport chain pathway, cytoplasmic ribosomal protein pathway, fatty acid degradation pathway, and TGF-beta signaling pathway. These differentially expressed genes pathway analysis have not previously been iavestigated in the context of herbal medicine efficacy and represent novel factors for further study of the mechanism of herbal medicine efficacy.

  • PDF

Involvement of MAPK activation in chemokine or COX-2 productions by Toxoplasma gondii

  • Kim Ji-Young;Ahn Myoung-Hee;Song Hyun-Ouk;Choi Jong-Hak;Ryu Jae-Sook;Min Duk-Young;Cho Myung-Hwan
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.3
    • /
    • pp.197-207
    • /
    • 2006
  • This experiment focused on MAPK activation in host cell invasion and replication of T. gondii, as well as the expression of CC chemokines, MCP-1 and $MIP-1\alpha$, and enzyme, COX-2/prostaglandin $E_2(PGE_2)$ in infected cells via western blot, $[^3H]-uracil$ incorporation assay, ELISA and RT-PCR. The phosphorylation of ERK1/2 and p38 in infected HeLa cells was detected at 1 hr and/or 6 hr postinfection (PI). Tachyzoite proliferation was reduced by p38 or JNK MAPK inhibitors. MCP-1 secretion was enhanced in infected peritoneal macrophages at 6 hr PI. $MIP-1\alpha$ mRNA was increased in macrophages at 18 hr PI. MCP-1 and $MIP-1\alpha$ were reduced after treatment with inhibitors of ERK1/2 and JNK MAPKs. COX-2 mRNA gradually increased in infected RAW 264.7 cells and the secretion of COX-2 peaked at 6 hr PI. The inhibitor of JNK suppressed COX-2 expression. $PGE_2$ from infected RAW 264.7 cells was increased and synthesis was suppressed by PD98059, SB203580, and SP600125. In this study, the activation of p38, JNK and/or ERK1/2 MAPKs occurred during the invasion and proliferation of T. gondii tachyzoites in HeLa cells. Also, increased secretion and expression of MCP-1, $MIP-1\alpha$, COX-2 and $PGE_2$ were detected in infected macrophages, and appeared to occur via MAPK signaling pathways.

Shikonin Induces Apoptotic Cell Death via Regulation of p53 and Nrf2 in AGS Human Stomach Carcinoma Cells

  • Ko, Hyeonseok;Kim, Sun-Joong;Shim, So Hee;Chang, HyoIhl;Ha, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.501-509
    • /
    • 2016
  • Shikonin, which derives from Lithospermum erythrorhizon, has been traditionally used against a variety of diseases, including cancer, in Eastern Asia. Here we determined that shikonin inhibits proliferation of gastric cancer cells by inducing apoptosis. Shikonin's biological activity was validated by observing cell viability, caspase 3 activity, reactive oxygen species (ROS) generation, and apoptotic marker expressions in AGS stomach cancer cells. The concentration range of shikonin was 35-250 nM with the incubation time of 6 h. Protein levels of Nrf2 and p53 were evaluated by western blotting and confirmed by real-time PCR. Our results revealed that shikonin induced the generation of ROS as well as caspase 3-dependent apoptosis. c-Jun-N-terminal kinases (JNK) activity was significantly elevated in shikonin-treated cells, thereby linking JNK to apoptosis. Furthermore, our results revealed that shikonin induced p53 expression but repressed Nrf2 expression. Moreover, our results suggested that there may be a co-regulation between p53 and Nrf2, in which transfection with siNrf2 induced the p53 expression. We demonstrated for the first time that shikonin activated cell apoptosis in AGS cells via caspase 3- and JNK-dependent pathways, as well as through the p53-Nrf2 mediated signal pathway. Our study validates in partly the contribution of shikonin as a new therapeutic approaches/agent for cancer chemotherapy.

Dynamics and Control Methods of Cyanotoxins in Aquatic Ecosystem

  • Park, Ho-Dong;Han, Jisun;Jeon, Bong-seok
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.2
    • /
    • pp.67-79
    • /
    • 2016
  • Cyanotoxins in aquatic ecosystems have been investigated by many researchers worldwide. Cyanotoxins can be classified according to toxicity as neurotoxins (anatoxin-a, anatoxin-a(s), saxitoxins) or hepatotoxins (microcystins, nodularin, cylindrospermopsin). Microcystins are generally present within cyanobacterial cells and are released by damage to the cell membrane. Cyanotoxins have been reported to cause adverse effects and to accumulate in aquatic organisms in lakes, rivers and oceans. Possible pathways of microcystins in Lake Suwa, Japan, have been investigated from five perspectives: production, adsorption, physiochemical decomposition, bioaccumulation and biodegradation. In this study, temporal variability in microcystins in Lake Suwa were investigated over 25 years (1991~2015). In nature, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, during water treatment, the use of copper sulfate to remove algal cells causes extraction of a mess of microcystins. Cyanotoxins are removed by physical, chemical and biological methods, and the reduction of nutrients inflow is a basic method to prevent cyanobacterial bloom formation. However, this method is not effective for eutrophic lakes because nutrients are already present. The presence of a cyanotoxins can be a potential threat and therefore must be considered during water treatment. A complete understanding of the mechanism of cyanotoxins degradation in the ecosystem requires more intensive study, including a quantitative enumeration of cyanotoxin degrading microbes. This should be done in conjunction with an investigation of the microbial ecological mechanism of cyanobacteria degradation.

Suppressive Effect of Maslinic Acid on PMA-induced Protein Kinase C in Human B-Lymphoblastoid Cells

  • Mooi, Lim Yang;Yew, Wong Teck;Hsum, Yap Wei;Soo, Khoo Kong;Hoon, Lim Saw;Chieng, Yeo Chew
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1177-1182
    • /
    • 2012
  • Protein kinase C (PKC) has been implicated in carcinogenesis and displays variable expression profiles during cancer progression. Studies of dietary phytochemicals on cancer signalling pathway regulation have been conducted to search for potent signalling regulatory agents. The present study was designed to evaluate any suppressive effect of maslinic acid on PKC expression in human B-lymphoblastoid cells (Raji cells), and to identify the PKC isoforms expressed. Effects of maslinic acid on PKC activity were determined using a PepTag$^{(R)}$ assay for non-radioactive detection of PKC. The highest expression in Raji cells was obtained at 20 nM PMA induced for 6 hours. Suppressive effects of maslinic acid were compared with those of four PKC inhibitors (H-7, rottlerin, sphingosine, staurosporine) and two triterpenes (oleanolic acid and ursolic acid). The $IC_{50}$ values achieved for maslinic acid, staurosporine, H-7, sphingosine, rottlerin, ursolic acid and oleanolic acid were 11.52, 0.011, 0.767, 2.45, 5.46, 27.93 and $39.29\;{\mu}M$, respectively. Four PKC isoforms, PKC ${\beta}I$, ${\beta}II$, ${\delta}$, and ${\zeta}$, were identified in Raji cells via western blotting. Maslinic acid suppressed the expression of PKC ${\beta}I$, ${\delta}$, and ${\zeta}$ in a concentration-dependent manner. These preliminary results suggest promising suppressive effects of maslinic acid on PKC activity in Raji cells. Maslinic acid could be a potent cancer chemopreventive agent that may be involved in regulating many downstream signalling pathways that are activated through PKC receptors.

Physical Activity and its Relation to Cancer Risk: Updating the Evidence

  • Kruk, Joanna;Czerniak, Urszula
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.3993-4003
    • /
    • 2013
  • Scientific evidence for the primary prevention of cancer caused by physical activity of regular moderate-intensity or greater is rapidly accumulating in this field. About 300 epidemiologic studies on the association between physical activity and cancer risk have been conducted worldwide. The objectives of this paper were three-fold: (i) to describe briefly the components of physical activity and its quantification; (ii) to summarize the most important conclusions available from comprehensive reports, and reviews of the epidemiologic individual and intervention studies on a role physical activity in cancer prevention; (iii) to present proposed biological mechanisms accounting for effects of activity on cancer risk. The evidence of causal linked physical activity and cancer risk is found to be strong for colon cancer - convincing; weaker for postmenopausal breast and endometrium cancers - probable; and limited suggestive for premenopausal breast, lung, prostate, ovary, gastric and pancreatic cancers. The average risk reductions were reported to be 20-30%. The protective effects of physical activity on cancer risk are hypothesized to be through multiple interrelated pathways: decrease in adiposity, decrease in sexual and metabolic hormones, changes in biomarkers and insulin resistance, improvement of immune function, and reduction of inflammation. As there are several gaps in the literature for associations between activity and cancer risk, additional studies are needed. Future research should include studies dealing with limitations in precise estimates of physical activity and of a lack of consensus on what defines sedentary behavior of individuals and those linked with the proposed biomarkers to cancer risk and controlled exercise intervention trials.

Systems-level mechanisms of action of Panax ginseng: a network pharmacological approach

  • Park, Sa-Yoon;Park, Ji-Hun;Kim, Hyo-Su;Lee, Choong-Yeol;Lee, Hae-Jeung;Kang, Ki Sung;Kim, Chang-Eop
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.98-106
    • /
    • 2018
  • Panax ginseng has been used since ancient times based on the traditional Asian medicine theory and clinical experiences, and currently, is one of the most popular herbs in the world. To date, most of the studies concerning P. ginseng have focused on specific mechanisms of action of individual constituents. However, in spite of many studies on the molecular mechanisms of P. ginseng, it still remains unclear how multiple active ingredients of P. ginseng interact with multiple targets simultaneously, giving the multidimensional effects on various conditions and diseases. In order to decipher the systems-level mechanism of multiple ingredients of P. ginseng, a novel approach is needed beyond conventional reductive analysis. We aim to review the systems-level mechanism of P. ginseng by adopting novel analytical framework-network pharmacology. Here, we constructed a compound-target network of P. ginseng using experimentally validated and machine learning-based prediction results. The targets of the network were analyzed in terms of related biological process, pathways, and diseases. The majority of targets were found to be related with primary metabolic process, signal transduction, nitrogen compound metabolic process, blood circulation, immune system process, cell-cell signaling, biosynthetic process, and neurological system process. In pathway enrichment analysis of targets, mainly the terms related with neural activity showed significant enrichment and formed a cluster. Finally, relative degrees analysis for the target-disease association of P. ginseng revealed several categories of related diseases, including respiratory, psychiatric, and cardiovascular diseases.

Transcriptomic profiling of the maize (Zea mays L.) to drought stress at the seedling stage

  • Moon, Jun-Cheol;Kim, Hyo Chul;Lee, Byung-Moo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.111-111
    • /
    • 2017
  • The development and productivity of maize (Zea mays L.) is frequently impacted by water scarcity, and consequently to increased drought tolerance in a priority target in maize breeding programs. To elucidate the molecular mechanisms of resistance to drought stress in maize, RNA-seq of the public database was used for transcriptome profiling of the seedling stage exposed to drought stress of three levels, such as moderate, severe drought stress and re-watering. In silico analysis of differentially expressed genes (DEGs), 176 up-regulated and 166 down-regulated DEGs was detected at moderated stress in tolerance type. These DEGs was increasing degradation of amino acid metabolism in biological pathways. Six modules based on a total of 4,771 DEGs responses to drought stress by the analysis of co-expression network between tolerance and susceptible type was constructed and showed to similar module types. These modules were discriminated yellow, greenyellow, turquoise, royalblue, brown4 and plum1 with 318, 2433, 375, 183, 1405 and 56 DEGs, respectively. This study was selected 30 DEGs to predicted drought stress response gene and was evaluated expression levels using drought stress treated sample and re-watering sample by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). 23 genes was shown increasing with drought stress and decreasing with re-watering. This study contribute to a better understanding of the molecular mechanisms of maize seedling stage responses to drought stress and could be useful for developing maize cultivar resistant to drought stress.

  • PDF