• Title/Summary/Keyword: biological pathways

Search Result 704, Processing Time 0.028 seconds

The Roles of Epigenetic Reprogramming in Age-related Diseases (노화관련 질환에 대한 후성유전의 역할)

  • Seonhwa Hwang;Gyeongmin Kim;Hye Kyung Kim;Min Hi Park
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.736-745
    • /
    • 2023
  • Aging is a complex biological process characterized by a gradual decline in cellular and physiological functions. This natural process is associated with age-related diseases, including Alzheimer's disease, atherosclerosis, and hypogonadism, which are significant health concerns among older individuals and can significantly impact their quality of life. Researchers have found that epigenetic markers play a crucial role in regulating aging and age-related diseases. Epigenetic markers are heritable gene expression alterations that do not change in the DNA sequence. This review focuses on the involvement of various epigenetic marks, such as RNA methylation, DNA methylation, and microRNAs (miRNAs), in regulating gene expression patterns associated with age-related diseases, such as Alzheimer's disease, atherosclerosis, and hypogonadism. These epigenetic alterations can lead to the dysregulation of specific genes and signaling pathways, contributing to the development and progression of Alzheimer's disease, atherosclerosis, and hypogonadism. Understanding the molecular mechanisms behind these epigenetic modifications is essential for both the aging population and individuals seeking ways to promote overall well-being. By gaining deeper insights into how epigenetic marker alteration occurs during aging and age-related diseases, researchers can potentially develop targeted therapeutic strategies to alleviate the impact of these conditions and improve the quality of life for older individuals.

Identification of subgroups with poor lipid control among patients with dyslipidemia using decision tree analysis: the Korean National Health and Nutrition Examination Survey from 2019 to 2021 (의사결정나무 분석을 이용한 이상지질혈증 유병자의 지질관리 취약군 예측: 2019-2021년도 국민건강영양조사 자료)

  • Hee Sun Kim;Seok Hee Jeong
    • Journal of Korean Biological Nursing Science
    • /
    • v.25 no.2
    • /
    • pp.131-142
    • /
    • 2023
  • Purpose: The aim of this study was to assess lipid levels and to identify groups with poor lipid control group among patients with dyslipidemia. Methods: Data from 1,399 Korean patients with dyslipidemia older than 20 years were extracted from the Korea National Health and Nutrition Examination Survey. Complex sample analysis and decision-tree analysis were conducted with using SPSS for Windows version 27.0. Results: The mean levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein-cholesterol (LDL-C), and high density lipoprotein cholesterol were 211.38±1.15 mg/dL, 306.61±1.15 mg/dL, 118.48±1.08 mg/dL, and 42.39±1.15 mg/dL, respectively. About 61% of participants showed abnormal lipid control. Poor glycemic control groups (TC ≥ 200 mg/dL or TG ≥ 150 mg/dL or LDL-C ≥ 130 mg/dL) were identified through seven different pathways via decision-tree analysis. Poor lipid control groups were categorized based on patients' characteristics such as gender, age, education, dyslipidemia medication adherence, perception of dyslipidemia, diagnosis of myocardial infarction or angina, diabetes mellitus, perceived health status, relative hand grip strength, hemoglobin A1c, aerobic exercise per week, and walking days per week. Dyslipidemia medication adherence was the most significant predictor of poor lipid control. Conclusion: The findings demonstrated characteristics that are predictive of poor lipid control and can be used to detect poor lipid control in patients with dyslipidemia.

Triamcinolone acetonide alleviates benign biliary stricture by ameliorating biliary fibrosis and inflammation

  • Seyeon Joo;See Young Lee;Su Yeon Lee;Yeseong Hwang;Minki Kim;Jae Woong Jeong;Sung Ill Jang;Sungsoon Fang
    • BMB Reports
    • /
    • v.57 no.4
    • /
    • pp.200-205
    • /
    • 2024
  • We conducted a comprehensive series of molecular biological studies aimed at unraveling the intricate mechanisms underlying the anti-fibrotic effects of triamcinolone acetonide (TA) when used in conjunction with fully covered self-expandable metal stents (FCSEMS) for the management of benign biliary strictures (BBS). To decipher the molecular mechanisms responsible for the anti-fibrotic effects of corticosteroids on gallbladder mucosa, we conducted a comprehensive analysis. This analysis included various methodologies such as immunohisto-chemistry, ELISA, real-time PCR, and transcriptome analysis, enabling us to examine alterations in factors related to fibrosis and inflammation at both the protein and RNA levels. Overall, our findings revealed a dose-dependent decrease in fibrosis-related signaling with higher TA concentrations. The 15 mg of steroid treatment (1X) exhibited anti-fibrosis and anti-inflammatory effects after 4 weeks, whereas the 30 mg of steroid treatment (2X) rapidly reduced fibrosis and inflammation within 2 weeks in BBS. Transcriptomic analysis results consistently demonstrated significant downregulation of fibrosis- and inflammation-related pathways and genes in steroid-treated fibroblasts. Use of corticosteroids, specifically TA, together with FCSEMS was effective for the treatment of BBS, ameliorating fibrosis and inflammation. Our molecular biological analysis supports the potential development of steroid-eluted FCSEMS as a therapeutic option for BBS in humans resulting from various surgical procedures.

Effects of PEP-1-FK506BP on cyst formation in polycystic kidney disease

  • Jo, Hyo Sang;Eum, Won Sik;Park, Eun Young;Ko, Je Young;Kim, Do Yeon;Kim, Dae Won;Shin, Min Jea;Son, Ora;Cho, Su Bin;Park, Jung Hwan;Lee, Chi Hern;Yeo, Eun Ji;Yeo, Hyeon Ji;Choi, Yeon Joo;Youn, Jong Kyu;Cho, Sung-Woo;Park, Jinseu;Park, Jong Hoon;Choi, Soo Young
    • BMB Reports
    • /
    • v.50 no.9
    • /
    • pp.460-465
    • /
    • 2017
  • Polycystic kidney disease (PKD) is one of the most common inherited disorders, involving progressive cyst formation in the kidney that leads to renal failure. FK506 binding protein 12 (FK506BP) is an immunophilin protein that performs multiple functions, including regulation of cell signaling pathways and survival. In this study, we determined the roles of PEP-1-FK506BP on cell proliferation and cyst formation in PKD cells. Purified PEP-1-FK506BP transduced into PKD cells markedly inhibited cell proliferation. Also, PEP-1-FK506BP drastically inhibited the expression levels of p-Akt, p-p70S6K, p-mTOR, and p-ERK in PKD cells. In a 3D-culture system, PEP-1-FK506BP significantly reduced cyst formation. Furthermore, the combined effects of rapamycin and PEP-1-FK506BP on cyst formation were markedly higher than the effects of individual treatments. These results suggest that PEP-1-FK506BP delayed cyst formation and could be a new therapeutic strategy for renal cyst formation in PKD.

NDRG2-mediated Modulation of SOCS3 and STAT3 Activity Inhibits IL-10 Production

  • Lee, Eun-Byul;Kim, Ae-Yung;Kang, Kyeong-Ah;Kim, Hye-Ree;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • v.10 no.6
    • /
    • pp.219-229
    • /
    • 2010
  • Background: N-myc downstream regulated gene 2 (NDRG2) is a member of the NDRG gene family. Our previous report indicated a possible role for NDRG2 in regulating the cytokine, interleukin-10 (IL-10), which is an important immunosuppressive cytokine. Several pathways, including p38-MAPK, NF-${\kappa}B$, and JAK/STAT, are used for IL-10 production, and the JAK/STAT pathway can be inhibited in a negative feedback loop by the inducible protein, SOCS3. In the present study, we investigated the effect of NDRG2 gene expression on IL-10 signaling pathway that is modulated via SOCS3 and STAT3. Methods: We generated NDRG2-overexpressing U937 cell line (U937-NDRG2) and treated the cells with PMA to investigate the role of NDRG2 in IL-10 production. U937 cells were also transfected with SOCS3- or NDRG2-specific siRNAs to examine whether the knockdown of SOCS3 or NDRG2 influenced IL-10 expression. Lastly, STAT3 and SOCS3 induction was measured to identify the signaling pathway that was associated with IL-10 production. Results: RT-PCR and ELISA assays showed that IL-10 was increased in U937-mock cells upon stimulation with PMA, but IL-10 was inhibited by overexpression NDRG2. After PMA treatment, STAT3 phosphorylation was decreased in a time-dependent manner in U937-mock cells, whereas it was maintained in U937-NDRG2 cells. SOCS3 was markedly reduced in U937-NDRG2 cells compared with U937-mock cells. IL-10 production after PMA stimulation was reduced in U937 cells when SOCS3 was inhibited, but this effect was less severe when NDRG2 was inhibited. Conclusion: NDRG2 expression modulates SOCS3 and STAT3 activity, eventually leading to the inhibition of IL-10 production.

Analytical trends in mass spectrometry based metabolomics approaches of neurochemicals for diagnosis of neurodegenerative disorders (퇴행성신경질환의 진단을 위한 신경전달물질 대사체의 질량 분석법 동향)

  • Lee, Na-Kyeong;Jeon, Won-Jei;Jeong, Seung-Woo;Byun, Jae-Sung;Lee, Wonwoong;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.355-378
    • /
    • 2017
  • Because neurochemicals are related to homeostasis and cognitive and behavioral functions in human body and because they enable the diagnosis of numerous neurodegenerative disorders, there has been increasing interest in the development of analytical platforms for neurochemical profiling in biological samples. In particular, mass spectrometry (MS)-based analytical methods combined with chromatographic separation have been widely used to profile neurochemicals in metabolic pathways. However, development of delicate sample preparation procedures and highly sensitive instrumental detection is necessary considering the trace levels and chemical instabilities of neurochemicals in biological samples. Therefore, in this review, analytical trends in MS-based metabolomics approaches to neurochemicals in multiple biological samples, such as urine, blood, CSF, and biological tissues, are discussed. This paper is expected to contribute to the development of an analytical platform to discover biomarkers that will aid diagnosis, prognosis, and treatment of neurodegenerative disorders.

Functional Analysis of an Antibiotic Regulatory Gene, afsR2 in S. lividans through DNA microarray System (DNA 마이크로어레이 시스템 분석을 통한 S. lividans 유래 항생제 조절유전자 afsR2 기능 분석)

  • Kim, Chang-Young;Noh, Jun-Hee;Lee, Han-Na;Kim, Eung-Soo
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2009
  • AfsR2 in Streptomyces lividans, a 63-amino acid protein with limited sequence homology to Streptomyces sigma factors, has been known for a global regulatory protein stimulating multiple antibiotic biosynthetic pathways. Although the detailed regulatory mechanism of AfsK-AfsR-AfsR2 system has been well characterized, very little information about the AfsR2-dependent down-stream regulatory genes were characterized. Recently, the null mutant of afsS in S. coelicolor (the identical ortholog of afsR2) has been characterized through DNA microarray system, revealing that afsS deletion regulated several genes involved in antibiotic biosynthesis as well as phosphate-starvation. Through comparative DNA microarray analysis of afsR2-overexpressed S. lividans, here we also identify several afsR2-dependent genes involved in phosphate starvation, morphological differentiation, and antibiotic regulation in S. lividans, confirming that the AfsR2 plays an important pleiotrophic regulatory role in Streptomyces species.

Molecular Cloning and Characterization of a Large Subunit of Salmonella typhimurium Glutamate Synthase (GOGAT) Gene in Escherichia coli

  • Chung Tae-Wook;Lee Dong-Ick;Kim Dong-Soo;Jin Un-Ho;Park Chun;Kim Jong-Guk;Kim Min-Gon;Ha Sang-Do;Kim Keun-Sung;Lee Kyu-Ho;Kim Kwang-Yup;Chung Duck-Hwa;Kim Cheorl-Ho
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.301-310
    • /
    • 2006
  • Two pathways of ammonium assimilation and glutamate biosynthesis have been identified in microorganisms. One pathway involves the NADP-linked glutamate dehydrogenase, which catalyzes the amination of 2-oxoglutarate to form glutamate. An alternative pathway involves the combined activities of glutamine synthetase, which aminates glutamate to form glutamine, and glutamate synthase, which transfers the amide group of glutamine to 2-oxoglutarate to yield two molecules of glutamate. We have cloned the large subunit of the glutamate synthase (GOGAT) from Salmonella typhimurium by screening the expression of GOGAT and complementing the gene in E. coli GOGAT large subunit-deficient mutants. Three positive clones (named pUC19C12, pUC19C13 and pUC19C15) contained identical Sau3AI fragments, as determined by restriction mapping and Southern hybridization, and expressed GOGAT efficiently and constitutively using its own promoter in the heterologous host. The coding region expressed in Escherichia coli was about 170 kDa on SDS-PAGE. This gene spans 4,732 bases, contains an open reading frame of 4,458 nucleotides, and encodes a mature protein of 1,486 amino acid residues (Mr =166,208). The EMN-binding domain of GOGAT contains 12 glycine residues, and the 3Fe-4S cluster has 3 cysteine residues. The comparison of the translated amino acid sequence of the Salmonella GOGAT with sequences from other bacteria such as Escherichia coli, Salmonella enterica, Shigella flexneri, Yersinia pestis, Vibrio vulnificus and Pseudomonas aeruginosa shows sequence identity between 87 and 95%.

Apoptotic Effects of Resveratrol via mTOR and COX-2 Signal Pathways in MCF-7 Breast Cancer Cells (MCF-7 유방암 세포에서 mTOR-COX-2 신호경로를 통한 resveratrol의 apoptosis 효과)

  • Lee, Sol-Hwa;Lee, Hye-Yeon;Park, Song-Yi;Park, Ock-Jin;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1288-1294
    • /
    • 2011
  • Resveratrol, a kind of phytochemical, is presented in grape skins. Resveratorl exerts antiproliferative, anti-cancer and pro-apoptotic activities in cancer cells. Mammalian target of rapamycin (mTOR) is a critical regulator of cellular growth and proliferation, and it is known to be a strategic target for anti-cancer therapeutic uses. mTOR is a major downstream of the PI3K/Akt pathway, which is activated in various cancer cells. It also plays an important role in the survival, proliferation and angiogenesis of cells. Cyclooxygenase-2 (COX-2) is an important protein that mediates inflammatory processes. It plays an important role in various tumors by affecting cell proliferation, mitosis, apoptosis and angiogenesis. In this study, we have investigated the effects of resveratrol on apoptosis through mTOR and COX-2 expression in MCF-7 breast cancer cells. The treatment of resveratrol with different concentrations inhibited proliferation of MCF-7. The data showed that resveratrol induced apoptotic cell death of cancer cells and decreased mTOR and COX-2 expression. These results suggest that resveratrol induces apoptosis of MCF-7 breast cancer cells by inhibiting mTOR and COX-2 expression.

A1E Induces Apoptosis via Targeting HPV E6/E7 Oncogenes and Intrinsic Pathways in Cervical Cancer Cells

  • Ham, Sun Young;Bak, Ye Sol;Kwon, Tae Ho;Kang, Jeong Woo;Choi, Kang Duk;Han, Tae Young;Han, Il Young;Yang, Young;Jung, Seung Hyun;Yoon, Do Young
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • A1E is an extract from traditional Asian medicinal plants that has therapeutic activities against cancers, metabolic disease, and other intractable conditions. However, its mechanism of action on cervical cancer has not been studied. In order to ascertain if A1E would have pronounced anti-cervical cancer effect, cervical cancer cells were incubated with A1E and apoptosis was detected by nuclear morphological changes, annexin V-FITC/PI staining, cell cycle analysis, western blotting, Reverse-transcription polymerase chain reaction, and measurement of mitochondrial membrane potential. Expression of human papiloma virus E6 and E7 oncogenes was down-regulated in A1E-treated cervical cancer cells, while p53 and retinoblastoma protein levels were enhanced. A1E also perturbed cell cycle progression at sub-G1 and altered cell cycle regulatory factors in SiHa cervical cancer cells. A1E activated apoptotic intrinsic pathway markers such as caspase-9, caspase-3 and poly ADP-ribose polymerase, and down-regulated expression of Bcl-2 and Bcl-xl. A1E induced mitochondrial membrane potential collapse and cytochrome c release, and inhibited phosphatidylinositol 3-kinase (PI3K)/Akt, key factors involved in cell survival signaling. Taken all these results, A1E induced apoptosis via activation of the intrinsic pathway and inhibition of the PI3K/Akt survival-signaling pathway in SiHa cervical cancer cells. In conclusion, A1E exerts anti-proliferative action growth inhibition on cervical cancer cells through apoptosis which demonstrates its anti-cervical cancer properties.