Molecular Cloning and Characterization of a Large Subunit of Salmonella typhimurium Glutamate Synthase (GOGAT) Gene in Escherichia coli

  • Chung Tae-Wook (Department of Biological Sciences, Sungkyunkwan University) ;
  • Lee Dong-Ick (Department of Food Science and Technology, Kyungsung University) ;
  • Kim Dong-Soo (Department of Food Science and Technology, Kyungsung University) ;
  • Jin Un-Ho (Department of Biological Sciences, Sungkyunkwan University) ;
  • Park Chun (Department of Biological Sciences, Sungkyunkwan University) ;
  • Kim Jong-Guk (Department of Microbiology, Kyungpook National University) ;
  • Kim Min-Gon (NanoBiotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ha Sang-Do (Department of Food Science & Technology, Chung-Ang University) ;
  • Kim Keun-Sung (Department of Food Science & Technology, Chung-Ang University) ;
  • Lee Kyu-Ho (Environmental Science, Hankuk University of Foreign Studies) ;
  • Kim Kwang-Yup (Department of Food Science & Technology, Chungbuk National University) ;
  • Chung Duck-Hwa (Division of Applied life science, Gyeongsang National University) ;
  • Kim Cheorl-Ho (Department of Biological Sciences, Sungkyunkwan University)
  • Published : 2006.06.01

Abstract

Two pathways of ammonium assimilation and glutamate biosynthesis have been identified in microorganisms. One pathway involves the NADP-linked glutamate dehydrogenase, which catalyzes the amination of 2-oxoglutarate to form glutamate. An alternative pathway involves the combined activities of glutamine synthetase, which aminates glutamate to form glutamine, and glutamate synthase, which transfers the amide group of glutamine to 2-oxoglutarate to yield two molecules of glutamate. We have cloned the large subunit of the glutamate synthase (GOGAT) from Salmonella typhimurium by screening the expression of GOGAT and complementing the gene in E. coli GOGAT large subunit-deficient mutants. Three positive clones (named pUC19C12, pUC19C13 and pUC19C15) contained identical Sau3AI fragments, as determined by restriction mapping and Southern hybridization, and expressed GOGAT efficiently and constitutively using its own promoter in the heterologous host. The coding region expressed in Escherichia coli was about 170 kDa on SDS-PAGE. This gene spans 4,732 bases, contains an open reading frame of 4,458 nucleotides, and encodes a mature protein of 1,486 amino acid residues (Mr =166,208). The EMN-binding domain of GOGAT contains 12 glycine residues, and the 3Fe-4S cluster has 3 cysteine residues. The comparison of the translated amino acid sequence of the Salmonella GOGAT with sequences from other bacteria such as Escherichia coli, Salmonella enterica, Shigella flexneri, Yersinia pestis, Vibrio vulnificus and Pseudomonas aeruginosa shows sequence identity between 87 and 95%.

Keywords

References

  1. Altschul, S.P., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Canosi, U, G. Morelli, and T.A. Trautner. 1978. The relationship between molecular structure and transformation efficiency of some S. aureus plasmids isolated from B. subtilis. Mol. Gen. Genet. 166, 259-267
  3. Chen, C.Y, K.M. Wu, Y.C. Chang, C.H. Chang, H.C. Tsai, T.L. Liao, Y.M. Liu, H.J. Chen, A.B. Shen, J.C. Li, T.L. Su, C.P. Shao, C.T Lee, L.I. Hor, and S.F. Tsai. 2003. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res. 13, 2577-87 https://doi.org/10.1101/gr.1295503
  4. Csonka, L.N., T.P. Ikeda, S.A. Fletcher, and S. Kustu. 1994. The accumulation of glutamate is necessary for optimal growth of Salmonella typhimurium in media of high osmolality but not induction of the proU operon. J. Bacteriol. 176, 6324-6333 https://doi.org/10.1128/jb.176.20.6324-6333.1994
  5. Deng, W., S.R. Liou. Plunkett G 3rd, GFP. Mayhew, D.J. Rose, V. Burland, V. Kodoyianni, D.C. Schwartz, and P.R. Blattner. 2003. Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J. Bacteriol. 185, 2330-2337 https://doi.org/10.1128/JB.185.7.2330-2337.2003
  6. Jin, U.H., S.H. Cho, M.G. Kim, S.D. Ha, K.S. Kim, K.H. Lee, K.Y. Kim, D.H. Chung, Y.C. Lee, and C.H. Kim. 2004. PCR method based on the ogdH gene for the detection of Salmonella spp. from chicken meat samples. J. Microbiol. 42, 216-222
  7. Johnson, M.K., A.T Kowal, lE. Morningstar, M.E. Oliver, K. Whittaker, R.P. Gunsalus, B.A.C. Ackerll, and G. Cecchini. 1989. Subunit location of the iron sulfur clusters in fumarate reductase from Escherichia coli. J. Biol. Chem. 263, 14732-14738
  8. Kaback, H.R., K.H. Zen, TG. Consler, and H.R. Kaback. 1995. Insertion of the polytopic membrane protein lactose permease occurs by multiple mechanisms. Biochemistry 34, 3430-3437 https://doi.org/10.1021/bi00010a035
  9. Kim, C.H. 2003. Calatytic domain of Salmonella typhimurium 2-oxoglutarate dehydrogenase is localized in N-terminal region. J. Molecular Catalysis B: Enzymatic. 26, 193-200 https://doi.org/10.1016/j.molcatb.2003.06.002
  10. Kustu, S., J. Hirschman, D. Burton, J. Jelesko, and J.C. Meeks. 1984. Covalent modification of bacterial glutamine synthetase: physiological significance. Mol. Gen. Genet. 197, 309-317 https://doi.org/10.1007/BF00330979
  11. Ish-Horowicz, D., and J.F. Burke. 1981. Rapid and efficient cosmid cloning. Nucleic Acids Res. 9, 2989-2998 https://doi.org/10.1093/nar/9.13.2989
  12. Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265
  13. Mandel, M., and A. Higa. 1979. Calcium-dependent bacteriophage DNA infection. J. Mol. Biol. 53, 159-162
  14. Maniatis, T., E.F. Fritsch, and J. Sambrook, Molecular cloning, a laboratory manual. Cold Spring Harbour Laboratory, New York, 1982, p.68, p.150
  15. Miller, R.E., and E.R. Stadtman. 1972. Glutamate synthase from Escherichia coli. An iron-sulfide flavoprotein. J. Biol. Chem. 247, 7407-7419
  16. Manodori, A., G. Cecchini, I. Schroder, R.P. Gunsalus, M.T Werth, and M.K. Johson. 1992. [3Fe-4S] to [4Fe-4S] cluster conversion in Escherichia coli fumarate reductase by site-directed mutagenesis. Biochemistry 31, 2703-2712 https://doi.org/10.1021/bi00125a010
  17. Nandineni, M.R., R.S. Laishram, and J. Gowrishankar. 2004. Osmosensitivity associated with insertions in argP (iciA) or glnE in glutamate synthase-deficient mutants of Escherichia coli. J. Bacteriol. 186, 6391-6399 https://doi.org/10.1128/JB.186.19.6391-6399.2004
  18. Navarro, F., S. Chavez, P. Candau, and F.J. Florencio. 1995. Existence of two ferredoxin-glutamate synthases in the cyanobacterium Syncechocystis sp. PCC 6803: Isolation and insertional inactivation of gltB and gltS genes. Plant Molecular Biol. 27, 753-767 https://doi.org/10.1007/BF00020228
  19. Navarro, F., S. Chavez, C. Candau, and F.J. Florencio. 1995. Existence of two ferredoxin-glutamate synthases in the cyanobacterium Synechocystis sp. PCC 6803. Isolation and insertional inactivation of gltB and gltS genes. Plant Mol. Biol. 27, 753-767 https://doi.org/10.1007/BF00020228
  20. Neville, D.M. 1971. Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J. Biol. Chem. 246, 6328-6334
  21. Oliver, G., G. Gosset, R. Sanchez-Pescador, E. Lozoya, L.M. Ku, N, Flores, B. Becerril, F. Valle, and F. Bolivar. 1987. Determination of the nucleotide sequence for the glutamate synthase structural genes of Escherichia coli K-12. Gene 60, 1-11 https://doi.org/10.1016/0378-1119(87)90207-1
  22. Parkhill, J., B.W. Wren, N.R. Thomson, R.W. Titball, M.T Holden, M.B. Prentice, M. Sebaihia, K.D. James, C. Churcher, K.L. Mungall, S. Baker, D. Basham, S.D. Bentley, K. Brooks, A.M. Cerdeno-Tarraga, T. Chillingworth, A. Cronin, R.M. Davies, P. Davis, G. Dougan, T. Feltwell, N. Hamlin, S. Holroyd, K. Jagels, A.V. Karlyshev, S. Leather, S. Moule, P.C. Oyston, M. Quail, K. Rutherford, M. Simmonds, J. Skelton, K. Stevens, S. Whitehead, and B.G. Barrell. 2001. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523-7 https://doi.org/10.1038/35097083
  23. Pelanda, R., M.A. Vanoni, M. Perego, L. Piubelli, A. Galizzi, B. Curti, and G. Zanetti. 1993. Glutamate synthase genes of the diazotroph Azospirillum brasilense. J. Biol. Chem. 268, 3099-3106
  24. Reitzer, L. 2003. Nitrogen assimilation and global regulation in Escherichia coli. Annu. Rev. Microbiol. 57, 155-176 https://doi.org/10.1146/annurev.micro.57.030502.090820
  25. Reitzer, L., and B.L. Schneider. 2001. Metabolic context and possible physiological themes of $\sigma^{54}$-dependent genes in Escherichia coli. Microbiol. Mol. Biol. Rev. 65, 422-444 https://doi.org/10.1128/MMBR.65.3.422-444.2001
  26. Reitzer, L.J. 1996. Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, l-alanine, and d-alanine, p. 391-407. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. American Society for Microbiology, Washington, D.C., USA
  27. Rhee, S.G., P.B. Chock, and E.R. Stadtman. 1985. in The Enzymology of Post-Translational Modification of Proteins, eds. Freedman, R. B. & Hawkins, H. C. (Academic, New York), Vol. 2, pp. 273-297
  28. Saroja, G.N., and J. Gowrishankar. 1996. Roles of SpoT and FNR in NH4+ assimilation and osmoregulation in GOGAT (glutamate synthase)-deficient mutants. J. Bacteriol. 178, 4105-4114 https://doi.org/10.1128/jb.178.14.4105-4114.1996
  29. Schutt, H., and Holzer, H. 1972. Biological function of the ammonia-induced inactivation of glutamine synthetase III Escherichia coli. Eur. J. Biochem. 26, 68-72 https://doi.org/10.1111/j.1432-1033.1972.tb01740.x
  30. Stover, C.K., X.Q. Pham, A.L. Erwin, S.D. Mizoguchi, P. Warrener, MJ. Hickey, F.S. Brinkman, W.O. Hufnagle, D.J. Kowalik, M. Lagrou, RL. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L.L. Brody, S.N. Coulter, K.R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G.K. Wong, Z., Z. Wu, LT. Paulsen, J. Reizer, M.H. Saier, R.E. Hancock, S. Lory, and M.Y. Olson. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959-964 https://doi.org/10.1038/35023079
  31. Suzuki, A. and S. Rothstein. 1997. Structure and regulation of ferredoxin-dependent glutamate synthse from Arabidopsis thaliana: Cloning of cDNA, expression in different tissues of wild-type and gltS mutant strains, and light induction. Eur. J. Biochem. 243, 708-718 https://doi.org/10.1111/j.1432-1033.1997.00708.x
  32. Tempest, D.W., J.L. Meers, and C.M. Brown. 1970. Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochem. J. 117, 405-407 https://doi.org/10.1042/bj1170405
  33. Valenzuela, L., P. Ballario, C. Aranda, and A. Gonzalez. 1998. Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae. J. Bacteriol. 180, 3533-3540
  34. Wei, J., M.B. Goldberg, V. Burland, M.M. Venkatesan, W. Deng, G. Fournier, G.P. Mayhew, G. Plunkett, D.J. Rose, A. Darling, B. Man, N.T Perna, S.M. Payne, L.J. Runyen-Janecky, S. Zhou, D.C. Schwartz, P.R. Blattner. 2003. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect. Immun. 71, 2775-2786 https://doi.org/10.1128/IAI.71.5.2775-2786.2003
  35. Wolheuter, R.M., H. Schutt, and H. Holzer. 1973. in The Enzymes of Glutamine Metabolism, eds. Prusiner, S. and Stadtman, E. R. (Academic, New York), pp. 45-64
  36. Yan, D., T.P. Ikeda, A.E. Shauger, and S. Kustu. 1996. Glutamate is required to maintain the steady-state potassium pool in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 93, 6527-6531