• 제목/요약/키워드: molecular cloning

검색결과 1,136건 처리시간 0.031초

Schwanniomyces castellii CBS 2863으로부터 ${\alpha}$-Amylase 유전자 Cloning (Molecular Cloning of ${\alpha}$-Amylase Gene from Schwanniomyces CBS 2863)

  • 박종천;배석;전순배
    • 미생물학회지
    • /
    • 제32권1호
    • /
    • pp.34-39
    • /
    • 1994
  • Schwanniomyces castellii의 제놈 DNA로 제조된 유전자 은행으로부터 cloning된 ${\alpha}$-amylase 유전자가 Sacchromyces cerevisiae에서 발현되었다. Cloning된 삽입 DNA 절편의 크기는 약 5.0 kb이었고, Southern 및 immunoblot 분석 결과 cloning된 ${\alpha}$-amylase 유전자가 Sch. Castellii로부터 유래되었음이 확인되었다. S. cerevisiae SHY3 형질전환체에서 Sch. Castellii ${\alpha}$-amylase 유전자발현은 모균주에 비해 낮았으나, 단백질의 분자량 및 효소의 성질은 Sch. Castellii에서 분리한 ${\alpha}$-amylase의 그것과 차이가 없었다.

  • PDF

Construction of Chromosome-Specific BAC Libraries from the Filamentous Ascomycete Ashbya gossypii

  • Choi Sang-Dun
    • Genomics & Informatics
    • /
    • 제4권2호
    • /
    • pp.80-86
    • /
    • 2006
  • It is clear that the construction of large insert DNA libraries is important for map-based gene cloning, the assembly of physical maps, and simple screening for specific genomic sequences. The bacterial artificial chromosome (BAC) system is likely to be an important tool for map-based cloning of genes since BAC libraries can be constructed simply and analyzed more efficiently than yeast artificial chromosome (YAC) libraries. BACs have significantly expanded the size of fragments from eukaryotic genomes that can be cloned in Escherichia coli as plasmid molecules. To facilitate the isolation of molecular-biologically important genes in Ashbya gossypii, we constructed Ashbya chromosome-specific BAC libraries using pBeloBAC11 and pBACwich vectors with an average insert size of 100 kb, which is equivalent to 19.8X genomic coverage. pBACwich was developed to streamline map-based cloning by providing a tool to integrate large DNA fragments into specific sites in chromosomes. These chromosome-specific libraries have provided a useful tool for the further characterization of the Ashbya genome including positional cloning and genome sequencing.

B. pasteurii Urease 유전인자의 E. coli의 복제와 발현 (Molecular Cloning and Expression of Bacillus pasteurii Urease Gene in Escherichia coli)

  • Kim, Sang-Dal;John Spizizen
    • 한국미생물·생명공학회지
    • /
    • 제13권3호
    • /
    • pp.297-302
    • /
    • 1985
  • 미생물중 urease생성능이 아주 강한 B. pasteurii의 Hind III partial digest 된 chromosomal DNA를 E. coli-B. subtilis bifunctional plasmid vector pGR 71으로 E. coli RR1 균주에 cloning 하므로써 그 urease gene을 expression시킬 수 있었다. 그러나 B. subtilis에서는 insertion DNA fragment의 deletion으로 expression되지 않았다. Cloning된 E.coli RR1 균주로부터 분리 정제한 urease gene함유 Plasmid(pGU66)의 restriction map을 작성하여 본 결과 7.1 Mdal의 insertion fragment가 삽입된 12.6Mdal의 plasmid에 Hind III, Bgl II, Xba I, Sal I등 몇 개의 cleavage site 위치를 찾을 수 있었다. Cloning된 E. coli의 urease는 periplasmic space에 많은 비율로 축적되며, 그 효소학적 성질은 donor인 B.pasteurii의 그것과 매우 유사하였다.

  • PDF

'Restriction-PCR' - a Superior Replacement for Restriction Endonucleases in DNA Cloning Applications

  • Klimkait, Thomas
    • BMB Reports
    • /
    • 제33권2호
    • /
    • pp.162-165
    • /
    • 2000
  • Polymerase chain reaction (PCR) is well established as an indispensable tool of molecular biology; and yet a limitation for cloning applications continues to be that products often require subsequent restriction to be that products often require subsequent restriction digests, blunt-end ligation, or the use of special linear vectors. Here a rapid, PCR-based system is described for the simple, restriction enzyme-free generation of synthetic, 'restriction-like' DNA fragments with staggered ends. Any 3'- or 5'-protruding terminus, but also non-palindromic overhangs with an unrestricted single strand length are specifically created. With longer overhangs, "Restriction-PCR" does not even require a ligation step prior to transformation. Thereby the technique presents a powerful tool e.g. for a successive, authentic reconstitution of sub-fragments of long genes with no need to manipulate the sequence or to introduce restriction sites. Since restriction enzyme-free and thereby devoid the limitations of partial DNA digests, "Restriction-PCR" allows a straight one-step generation and cloning of difficult DNA fragments that internally carry additional sites for specific sequence insertions or deletions can be precisely engineered into genes of interest. With these properties "Restriction-PCR" has the potential to add significant speed and versatility to a wide variety of DNA cloning applications.

  • PDF

Cloning, Sequencing and Expression of an Extracellular Protease Gene from Serratia marcescens RH1 in Escherichia coli

  • Lee, Seung-Hwan;Kim, Jeong-Min;Kwon, Young-Tae;Kho, Young-Hee;Rho, Hyune-Mo
    • 미생물학회지
    • /
    • 제30권6호
    • /
    • pp.507-513
    • /
    • 1992
  • Serratia marecescens RH1 isolated from soil samples produced large amount of extracellular proteases. One of the genes encoding an extracellular protease form S. marcescens RH1 was cloned in Escherichia coli by shot gun cloning method. The cloned protease, SSP, was stably expressed by its own promoter and excreted into the extracellular medium from E. coli host (ORF) of 3.135 nucleotides corresponding to 1.045 amino acids (112 kDa). The nucleotide and deduced amino acid sequence of SSP showed high overall homology (88%) to one of the S. marcescens protease (27), but low homology to other serine protease families. The optimal pH and temperature of the enzyme were pH 9.0 and 45.deg.C respectively. The activity of protease was inhibited by phenylmethylsulfonyl fluoride (PMSF), which suggests that the enzyme is a serine protease.

  • PDF