• Title/Summary/Keyword: biological pathways

Search Result 703, Processing Time 0.027 seconds

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • Lee, Mi-Ock;Song, Ki-Hong;Lee, Hyun-Kyung;Jung, Ji-Yoon;Choe, Vit-Nary;Choe, Sung-Hwa
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were Shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • Lee, Mi-Ock;Song, Ki-Hong;Lee, Hyun-Kyung;Jung, Ji-Yoon;Choe, Vit-Nary;Choe, Sung-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.139-144
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd /dwf3 were shown to be blocked in D$^4$reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bril/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRIl could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

A systematic exploration of ginsenoside Rg5 reveals anti-inflammatory functions in airway mucosa cells

  • Hyojin Heo;Yumin Kim;Byungsun Cha;Sofia Brito;Haneul Kim;Hyunjin Kim;Bassiratou M. Fatombi;So Young Jung;So Min Lee;Lei Lei;Sang Hun Lee;Geon-woo Park;Byeong-Mun Kwak;Bum-Ho Bin;Ji-Hwan Park;Mi-Gi Lee
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.97-105
    • /
    • 2023
  • Background: Hyperactivated airway mucosa cells overproduce mucin and cause severe breathing complications. Here, we aimed to identify the effects of saponins derived from Panax ginseng on inflammation and mucin overproduction. Methods: NCI-H292 cells were pre-incubated with 16 saponins derived from P. ginseng, and mucin overproduction was induced by treatment with phorbol 12-myristate 13-acetate (PMA). Mucin protein MUC5AC was quantified by enzyme-linked immunosorbent assay, and mRNA levels were analyzed using quantitative polymerase chain reaction (qPCR). Moreover, we performed a transcriptome analysis of PMA-treated NCI-H292 cells in the absence or presence of Rg5, and differential gene expression was confirmed using qPCR. Phosphorylation levels of signaling molecules, and the abundance of lipid droplets, were measured by western blotting, flow cytometry, and confocal microscopy. Results: Ginsenoside Rg5 effectively reduced MUC5AC secretion and decreased MUC5AC mRNA levels. A systematic functional network analysis revealed that Rg5 upregulated cholesterol and glycerolipid metabolism, resulting in the production of lipid droplets to clear reactive oxygen species (ROS), and modulated the mitogen-activated protein kinase and nuclear factor (NF)-kB signaling pathways to regulate inflammatory responses. Rg5 induced the accumulation of lipid droplets and decreased cellular ROS levels, and N-acetyl-ⳑ-cysteine, a ROS inhibitor, reduced MUC5AC secretion via Rg5. Furthermore, Rg5 hampered the phosphorylation of extracellular signal-regulated kinase and p38 proteins, affecting the NF-kB signaling pathway and pro-inflammatory responses. Conclusion: Rg5 alleviated inflammatory responses by reducing mucin secretion and promoting lipid droplet-mediated ROS clearance. Therefore, Rg5 may have potential as a therapeutic agent to alleviate respiratory disorders caused by hyperactivation of mucosa cells.

Review of Effect of the Mechanical Stress on Muscle (근육에 대한 역학적 스트레스의 영향)

  • Kang, Jong-Ho;Kim, Jin-Sang
    • PNF and Movement
    • /
    • v.6 no.2
    • /
    • pp.51-57
    • /
    • 2008
  • Purpose : Mechanical stress activates signaling cascades and leading to a specific response of a network of signaling pathways. The purpose of this study is to review the effect of mechanical stress-induced adaptation in skeletal muscle involves a biological mechanisms. Methods : This is literature study with Pubmed, Medline and books. Results : Skeletal muscle tissue demonstrates a malleability and may adjust its metabilic response, vascularization and neuromuscular characteristic makeup in response to alteration in functional demands. The adaptation in skeletal muscle involoves a multitude of signalling mechanisms related with insuline-like growth factor, vascular endothelial growth factor, neurotrophins. Conclusions : The identification of the basic relationships underlying the malleability of skeletal muscle tissue is likely to be of relevance for our understanding with PNF technique.

  • PDF

CuI Nanoparticles as New, Efficient and Reusable Catalyst for the One-pot Synthesis of 1,4-Dihydropyridines

  • Safaei-Ghomi, Javad;Ziarati, Abolfazl;Teymuri, Raheleh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2679-2682
    • /
    • 2012
  • A simple one-pot synthesis of two derivatives of 1,4-dihydropyridines has been described under reflux conditions using copper iodide nanoparticles (CuI NPs) as a catalyst in high yields. This method demonstrated four-component coupling reactions of aldehydes and ammonium acetate via two pathways. In one route, the reaction was performed using 2 eq ethyl acetoacetate while in the other one 1 eq ethyl acetoacetate and 1 eq malononitrile were used. The CuI NPs was reused and recycled without any loss of activity and product yield. It is noteworthy to state that wide range of the 1,4-dihydropyridines have attracted large interest due to pharmacological and biological activities.

Estimation of Visual Evoked Potentials Using Time-Frequency Analysis (시-주파수 분석법을 이용한 시각자극 유발전위에 관한 연구)

  • 홍석균;성홍모;윤영로;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.259-267
    • /
    • 2001
  • The visual evoked potentials(VEPs) is used to assist in the diagnosis of specific disorders associated with involvement of the sensory visual pathways. The P100 latency is an important parameter which is diagnosis of optic nerve disorders. There are characteristics of latency delay, wave distortion, amplitude deduction in abnormal subjects. It is difficult to diagnose in the case of producing peak at the P100 latency. In this paper, difference of pattern between normal VEPs and abnormal VEPs using the Choi-Williams distribution method is studied. We observed the relationship about time and spectrum. The result shown that normal VEPs had maximum spectral value at 20Hz~26.7Hz and abnormal VEPs had maximum spectral value at 16.7Hz~20Hz. Also normal VEPs spectrum is higher than abnormal VEPs spectrum.

  • PDF

Regulation of BDNF release in dopaminergic neurons

  • Jeon, Hong-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.743-746
    • /
    • 2003
  • The major pathological lesion in Parkinson's disease(PD) is selective degeneration and loss of pigmented dopaminergic neurons in substantia nigra (SN). Although the initial cause and subsequent molecular signaling mechanisms leading to the dopaminergic cell death underlying the PD process is elusive, the potent neurotrophic factors (NTFs), brain derived neurotrophic factor (BDNF) and glial cell line derived neurotrophic factor (GDNF), are known to exert dopaminergic neuroprotection both in vivo and in vitro models of PD employing the neurotoxin, MPTP. BDNF and its receptor, trkB are expressed in SN dopaminergic neurons and their innervation target. Thus, neurotrophins may have autocrine, paracrine and retrograde transport effects on the SN dopaminergic neurons. This study determined the BDNF secretion from SN dopaminergic neurons by ELISA. Regulation of BDNF synthesis/release and changes in signaling pathways are monitored in the presence of free radical donor, NO donor and mitochondrial inhibitors. Also, this study shows that BDNF is able to promote survival and phenotypic differentiation of SN dopaminergic neurons in culture and protect them against MPTP-induced neurotoxicity via MAP kinase pathway.

  • PDF

Potential roles of reactive oxygen species derived from chemical substances involved in cancer development in the female reproductive system

  • Kim, Soo-Min;Hwang, Kyung-A;Choi, Kyung-Chul
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.557-562
    • /
    • 2018
  • Reactive oxygen species (ROS) are major sources of cellular oxidative stress. Specifically, cancer cells harbor genetic alterations that promote a continuous and elevated production of ROS. While such oxidative stress conditions could be harmful to normal cells, they facilitate cancer cell growth in multiple ways by causing DNA damage and genomic instability, and ultimately by reprogramming cancer cell metabolism. This review provides up to date findings regarding the roles of ROS generation induced by diverse biological molecules and chemicals in representative women's cancer. Specifically, we describe the cellular signaling pathways that regulate direct or indirect interactions between ROS homeostasis and metabolism within female genital cancer cells.

Mapping Between Models for Pathway Dynamics and Structural Representations of Biological Pathways

  • Yavas, Gokhan;Ozsoyoglu, Z. Meral
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.415-420
    • /
    • 2005
  • Mathematical modeling and simulation of biochemical reaction networks gained a lot of attention recently since it can provide valuable insights into the interrelationships and interactions of genes, proteins and metabolites in a reaction network. A number of attempts have been made for modeling and storing biochemical reaction networks without their dynamical properties but unfortunately storing and efficiently querying of the dynamic (mathematical) models are not yet studied extensively. In this paper, we present a novel nested relational data schema to store a pathway with its dynamic properties. We then show how to make the mapping between this dynamic pathway schema with the corresponding static pathway representation.

  • PDF

Effects of Costunolide Derived from Saussurea lappa Clarke on Apoptosis in AGS Stomach Cancer Cell Lines

  • Sun, Seung-Ho;Ko, Seong-Gyu
    • The Journal of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.84-95
    • /
    • 2006
  • Costunolide is an active sesquiterpene lactone isolated from the root of Saussurea lappa Clarke and is known to exhibit a variety of biological activities, including anti-carcinogenic and anti-inflammatory effects. Nevertheless, the pharmacological pathways of costunolide have not yet been fully elucidated. In this study, its cytotoxic effects were examined using AGS gastric cancer cells. Its treatment resulted in apoptosis in a dose- and time-dependent manner. The effects were attributed to the regulation of pro-apoptotic molecules and suppression of anti-apoptotic molecules. These results suggest that costunolide may be a candidate to deal with gastric cancers by chemopreventive agents.

  • PDF