• 제목/요약/키워드: biological oxidation

검색결과 599건 처리시간 0.029초

고농도 페놀 폐수의 습식산화와 호기성 생물학적 통합처리 (Integrated Wet Oxidation and Aerobic Biological Treatment of the Wastewater Containing High Concentration of Phenol)

  • 최호준;이승호;유용호;윤왕래;서일순
    • KSBB Journal
    • /
    • 제22권4호
    • /
    • pp.244-248
    • /
    • 2007
  • 고농도 페놀폐수 전처리 습식산화공정의 반응온도, 초기 pH 및 균일촉매 ($CuSO_4$) 등이 후처리 호기성 생물학적 공정에 미치는 영향을 조사하였다. 습식산화에서의 높은 반응온도와 산성 초기조건이 후처리 생물학적 산화공정에서 높은 산화속도와 최종 COD 제거율을 유발하였다. 습식산화에서 균일촉매를 사용하면 전처리 습식산화반응은 낮은 반응온도에서도 높은 COD 제거속도를 보였으나, 후처리 생물학적 산화공정에서는 낮은 최종 COD 제거율을 나타내었다.

퀴놀린 폐수의 습식산화와 호기성 생물학적 통합처리 (Integrated Wet Oxidation and Aerobic Biological Treatment of the Quinoline Wastewater)

  • 권순석;문해미;이용학;유용호;윤왕래;서일순
    • KSBB Journal
    • /
    • 제23권3호
    • /
    • pp.245-250
    • /
    • 2008
  • 퀴놀린은 생물학적으로 거의 산화 분해되지 않았으나, 250$^{\circ}C$ 습식산화에서 니코틴산과 초산 등으로 산화 분해되었다. 퀴놀린 습식산화는 균일촉매 $CuSO_4$ 또는 쉽게 습식산화 분해되는 페놀에 의해 반응조건이 완화되었다. 퀴놀린 습식산화 반응의 주 생성물 중 하나인 니코틴산은 호기성 Bacillus 종균에 의해 산화 분해되었다. 촉매를 사용하지 않은 고온에서의 퀴놀린 습식산화 생성물의 생물학적 산화는 저온에서 진행된 균일 촉매 ($CuSO_4$) 습식산화와 퀴놀린-페놀 혼합용액 습식산화 반응 생성물의 생물학적 산화에 비하여 늦게 진행되었다. 반면에, 호기성 균주의 습식산화 생성물에의 적응은 생물학적 처리에서의 니코틴산 산화 분해 반응의 지체기를 크게 단축시켰다.

화학적산화 및 생물학적처리법에 의한 사진폐액의 처리 (Treatment of Photographic Wastewater by Chemical Oxidation and Biological Treatment process)

  • 정경훈;최형일
    • 한국환경보건학회지
    • /
    • 제23권1호
    • /
    • pp.34-42
    • /
    • 1997
  • A laboratory experiments were performed to investigate the treatment of photographic processing wastewater by chemical oxidation and biological treatment system. The effect of reaction conditions such as hydrogen peroxide dosage, ferrous sulfate dosage and pH on the COD removal in Fenton oxidation were investigated. The optimal dosage of hydrogen peroxide was 2.58 M and 3.87 M for the developing and fixing process wastewater, respectively. The Fenton oxidation was most efficient in the pH range of 3-5 and the optimal condition for initial reaction pH was 5 for a developing process wastewater. With iron powder catalyst, the COD for a developing process wastewater was removed in lower pH than with ferrous sulfate catalyst. The removal efficiency of COD for refractory compounds such as Diethyleneglycol, Benzylalcohol, Hydroxylamine Sulfate, Ammonium Thiosulfate, Ammonium Ferric EDTA and Disodium EDTA in the photogaphic wastewater was found than 90% except Potassium Carbonate. When the photographic processing wastewater after pretreatment by Fenton oxidation was treated with batch activated sludge process, the addition of $KH_2PO_4$ as a phosphorous compound improved the removal efficiency of COD. During the continuous biological treatment of developing and fixing process wastewater after pretreatment by Fenton oxidation, the effluent COD concentration less than 100 mg/l was obtained at 0.425 and 0.25 kgCOD/m$^3$.d, respectively.

  • PDF

영흥도에서 분리된 Phaeodactylum tricornutum의 증식 및 Monounsaturated fatty acid 관련 지방산 조성 분석 (Investigation of cultivation and FAME composition isolated Phaeodactylum tricornutum from Youngheung island)

  • 이상민;조용희;신동우;전효남;류영진;임상민;이철균
    • 한국해양바이오학회지
    • /
    • 제6권2호
    • /
    • pp.47-52
    • /
    • 2014
  • Oxidation stability and cold fuid property are considered as the most important factors for determining biodiesel quality. Among the fatty acids, monounsaturated fatty acid satisfy both oxidation stability and cold flow property of biodiesel quality standards. Microalgae with high monounsaturated fatty acid contents is have some benefit for producing to produce biodiesels with satisfying quality standards. In this study, monounsaturated fatty acid contents of a isolated microalga from Youngheung island was analyzed. Phaeodactylum tricornutum was isolated by streaking, and growth rate and fatty acid composition of the algae were investigated. Total FAME contents were consisted of 26% of saturated fatty acids, 43% of monounsaturated fatty acids, and 18% of polyunsaturated fatty acids. The contents of monounsaturated fatty acid were especially high in the Phaeodactylum species. This result implies that the FAMEs from P. tricornutum may contribute to improve the oxidation stability and cold flow property of biodiesel.

석유화학폐수 처리장 방류수의 재이용을 위한 고정생물막 공정에서 Fenton 산화전처리의 적응가능성 (Applicability of the lenten's Reagent Oxidation to Biological Fixed-Film Process for Reuse of Effluents from the Petrochemical Wastewster Effluent Treatment Plant)

  • 이규훈;김미화;박태주
    • 한국환경과학회지
    • /
    • 제4권5호
    • /
    • pp.115-115
    • /
    • 1995
  • Reuse of industrial effluents through the cooling systems in a petrochemical complex was described. The partial oxidation of the effluents from the biological treatment plant was examined, using Fenton''s reagent as a pretreatment step prior to a next treatment of the effluents. Next tertiary treatment using fixed-film reactor resulted in marked reductions in COD and suspended solids. The continuous fixed-film process with Fenton oxidation pretreatment showed a 23% increase in the COD removal efficiency when compared to that without pretreatment of Fenton oxidation under the volumetric organic loading rate of 0.1 kg COD/m3/day. The Fenton oxidation treatment seemed to be a possible method for tertiary biological treatment to reduce the residual toxicity with the enhanced biodegradation of the effluents.

석유화학폐수 처리장 방류수의 재이용을 위한 고정생물막 공정에서 Fenton 산화전처리의 적응가능성 (Applicability of the lenten류s Reagent Oxidation to Biological Fixed-Film Process for Reuse of Effluents from the Petrochemical Wastewster Effluent Treatment Plant)

  • 이규훈;김미화;박태주
    • 한국환경과학회지
    • /
    • 제4권5호
    • /
    • pp.501-508
    • /
    • 1995
  • Reuse of industrial effluents through the cooling systems in a petrochemical complex was described. The partial oxidation of the effluents from the biological treatment plant was examined, using Fenton's reagent as a pretreatment step prior to a next treatment of the effluents. Next tertiary treatment using fixed-film reactor resulted in marked reductions in COD and suspended solids. The continuous fixed-film process with Fenton oxidation pretreatment showed a 23% increase in the COD removal efficiency when compared to that without pretreatment of Fenton oxidation under the volumetric organic loading rate of 0.1 kg COD/m3/day. The Fenton oxidation treatment seemed to be a possible method for tertiary biological treatment to reduce the residual toxicity with the enhanced biodegradation of the effluents.

  • PDF

Electro-Oxidation in Combination with Biological Processes for Removal of Persistent Pollutants in Wastewater: A Review

  • Navarro-Franco, Javier A.;Garzon-Zuniga, Marco A.;Drogui, Patrick;Buelna, Gerardo;Gortares-Moroyoqui, Pablo;Barragan-Huerta, Blanca E.;Vigueras-Cortes, Juan M.
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.1-18
    • /
    • 2022
  • Persistent organic pollutants (POPs) and emerging pollutants (EP) are characterized by their difficulty to be removed through biological oxidation processes (BOPs); they persist in the environment and could have adverse effects on the aquatic ecosystem and human health. The electro-oxidation (EO) process has been successfully used as an alternative technique to oxidize many kinds of the aforementioned pollutants in wastewater. However, the EO process has been criticized for its high energy consumption cost and its potential generation of by-products. In order to decrease these drawbacks, its combination with biological oxidation processes has been reported as a solution to reduce costs and to reach high rates of recalcitrant pollutants removal from wastewaters. Thus, the location of EO in the treatment line is an important decision to make, since this decision affects the formation of by-products and biodegradability enhancement. This paper reviews the advantages and disadvantages of EO as a pre and post-treatment in combination with BOPs. A perspective of the EO scale-up is also presented, where hydrodynamics and the relationship of A/V (area of the electrode/working volume of the electrochemical cell) experiments are examined and discussed.

Role of oxygen in plasma induced chemical reactions in solution

  • Ki, Se Hoon;Uhm, Han Sup;Kim, Minsu;Baik, Ku Youn;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.208.2-208.2
    • /
    • 2016
  • Many researchers have paid attention to the studies on the interaction between non-thermal plasma and aqueous solutions for biomedical applications. The gas composition in the plasma is very important. Oxygen and nitrogen are the main gases of interest in biological applications. Especially, we focus on the oxygen concentration. In this experiment, we studied the role of oxygen concentration in plasma induced chemical reactions in solution. At first, the amount of ions are measured according to changing the oxygen concentration. And we checked the relationship between these ions and pH value. Secondly, when the oxygen concentration is changed, it identified the type and amount of radical generated by the plasma. In order to confirm the effect of these chemical property change to biological material, hemoglobin and RBCs are chosen. RBCs are one of the common basic biological cells. Thirdly, when plasma treated according to oxygen concentration in nitrogen feeding gas, oxidation of hemoglobin and RBC is checked. Finally, membrane oxidation of RBC is measured to examine the relation between hemoglobin oxidation and membrane damage through relative hemolysis and Young's modulus. Our results suggest that reactive species generated by the plasma differsdepending on the oxygen concentration changes. The pH values are decreased when oxygen concentration increased. OH decrease and NO increase are also observed. These reactive species makes change of chemical properties of solution. We also able to confirm that the difference in these reactive species to affect the oxidation of the Hb and RBCs. The Hb and RBCs are more oxidized with the high oxygen concentration conditions. But membrane is damaged more by plasma treatment with only nitrogen gas. It is shown that red blood cells membrane damage and oxidation of hemoglobin are not directly related.

  • PDF

Bacillus subtilis를 이용한 폐수처리 효과연구: 오존의 영향을 중심으로 (Study of wastewater-treatment's efficiency using Bacillus subtilis: with an effect of ozonation)

  • 박영규
    • 환경위생공학
    • /
    • 제17권4호
    • /
    • pp.29-38
    • /
    • 2002
  • Advanced oxidation of wastewater was studied with a purpose to remove TOC and color by the ozone-assisted Fenton reaction. The optimal conditions were determined by hydrogen peroxide and ozone concentrations. Experimental results indicate that the ozone treatment after Fentons process was found to provide very efficient removal efficiency in the process, avoiding the exclusive ozone treatment. The combined process of ozone in the Fenton oxidation respectively was increased removal efficiences of 10.7% in comparison with exclusive Fenton oxidation. Also, the treatments of ozone after Fenton's oxidation respectively had increased the removal efficiences of 16.%. As a result, the treatment of ozone after Fentons oxidation had the best removal efficiency of approximately 96%. Removal efficiency of color was significantly increased as mush as 26% by the advanced Fenton's oxidation in comparison with exclusive Fenton's oxidation. The removal efficiencies in the biological treatment using Bacillus subtilis after Fenton's oxidation and after Fenton's and ozone's oxidation were increased by 14% and 19% respectively. Although these combined Bacillus subtilis-assisted Fenton's oxidation was determined to be effective method to treat the dyeing wastewater in an economic point of view, the choice of wastewater treatment can be varied depending on water quality.

Enzymatic DNA oxidation: mechanisms and biological significance

  • Xu, Guo-Liang;Walsh, Colum P.
    • BMB Reports
    • /
    • 제47권11호
    • /
    • pp.609-618
    • /
    • 2014
  • DNA methylation at cytosines (5mC) is a major epigenetic modification involved in the regulation of multiple biological processes in mammals. How methylation is reversed was until recently poorly understood. The family of dioxygenases commonly known as Ten-eleven translocation (Tet) proteins are responsible for the oxidation of 5mC into three new forms, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Current models link Tet-mediated 5mC oxidation with active DNA demethylation. The higher oxidation products (5fC and 5caC) are recognized and excised by the DNA glycosylase TDG via the base excision repair pathway. Like DNA methyltransferases, Tet enzymes are important for embryonic development. We will examine the mechanism and biological significance of Tet-mediated 5mC oxidation in the context of pronuclear DNA demethylation in mouse early embryos. In contrast to its role in active demethylation in the germ cells and early embryo, a number of lines of evidence suggest that the intragenic 5hmC present in brain may act as a stable mark instead. This short review explores mechanistic aspects of TET oxidation activity, the impact Tet enzymes have on epigenome organization and their contribution to the regulation of early embryonic and neuronal development.