DOI QR코드

DOI QR Code

Electro-Oxidation in Combination with Biological Processes for Removal of Persistent Pollutants in Wastewater: A Review

  • Navarro-Franco, Javier A. (Instituto Politecnico Nacional (IPN) CIIDIR-Durango) ;
  • Garzon-Zuniga, Marco A. (Instituto Politecnico Nacional (IPN) CIIDIR-Durango) ;
  • Drogui, Patrick (Institute Nationale de Recherche Scientifique Eau Terre et Environnement (INRS-ETE) Universite du Quebec) ;
  • Buelna, Gerardo (Institute Nationale de Recherche Scientifique Eau Terre et Environnement (INRS-ETE) Universite du Quebec) ;
  • Gortares-Moroyoqui, Pablo (Instituto Tecnologico de Sonora (ITSON)) ;
  • Barragan-Huerta, Blanca E. (Instituto Politecnico Nacional Escuela Nacional de Ciencias Biologicas) ;
  • Vigueras-Cortes, Juan M. (Instituto Politecnico Nacional (IPN) CIIDIR-Durango)
  • Received : 2020.12.22
  • Accepted : 2021.08.06
  • Published : 2022.02.28

Abstract

Persistent organic pollutants (POPs) and emerging pollutants (EP) are characterized by their difficulty to be removed through biological oxidation processes (BOPs); they persist in the environment and could have adverse effects on the aquatic ecosystem and human health. The electro-oxidation (EO) process has been successfully used as an alternative technique to oxidize many kinds of the aforementioned pollutants in wastewater. However, the EO process has been criticized for its high energy consumption cost and its potential generation of by-products. In order to decrease these drawbacks, its combination with biological oxidation processes has been reported as a solution to reduce costs and to reach high rates of recalcitrant pollutants removal from wastewaters. Thus, the location of EO in the treatment line is an important decision to make, since this decision affects the formation of by-products and biodegradability enhancement. This paper reviews the advantages and disadvantages of EO as a pre and post-treatment in combination with BOPs. A perspective of the EO scale-up is also presented, where hydrodynamics and the relationship of A/V (area of the electrode/working volume of the electrochemical cell) experiments are examined and discussed.

Keywords

Acknowledgement

This study was sponsored by Instituto Politecnico Nacional (SIP 20171847; SIP 20170184; SIP 20180337), and by Consejo Nacional de Ciencia y Tecnologia (CONACYT) by the scholarship granted to PhD student Javier A. Navarro Franco.

References

  1. M. J. Martin de Vidales, M. Millan, C. Saez, J. F. Perez, M. A. Rodrigo, and P. Canizares, Chemosphere, 2015, 136, 281-288. https://doi.org/10.1016/j.chemosphere.2015.05.077
  2. S. Garcia-Segura, J. D. Ocon, and M. N. Chong, Process Saf. Environ. Prot., 2018, 113, 48-67. https://doi.org/10.1016/j.psep.2017.09.014
  3. D. R. Baker and B. Kasprzyk-Hordern, Sci. Total Environ., 2013, 454, 442-456. https://doi.org/10.1016/j.scitotenv.2013.03.043
  4. O. Ganzenko, D. Huguenot, E. D. van Hullebusch, G. Esposito, and M. A. Oturan, Environ. Sci. Pollut. Res., 2014, 21(14), 8493-8524. https://doi.org/10.1007/s11356-014-2770-6
  5. O. M. Rodriguez-Narvaez, J. M. Peralta-Hernandez, A. Goonetilleke, and E. R. Bandala, Chem. Eng. J., 2017, 323, 361-380. https://doi.org/10.1016/j.cej.2017.04.106
  6. P. Drogui, J. Blais, and G. Mercier, Recent Patents Eng., 2007, 1(3), 257-272. https://doi.org/10.2174/187221207782411629
  7. G. B. Tabrizi and M. Mehrvar, J. Environ. Sci. Heal. - Part A, 2004, 39(11-12), 3029-3081. https://doi.org/10.1081/LESA-200034939
  8. J. A. Barrios, A. Cano, J. E. Becerril, and B. Jimenez, J. Electroanal. Chem., 2016, 776, 148-151. https://doi.org/10.1016/j.jelechem.2016.07.018
  9. L. Szpyrkowicz, S. N. Kaul, R. N. Neti, and S. Satyanarayan, Water Res., 2005, 39(8), 1601-1613. https://doi.org/10.1016/j.watres.2005.01.016
  10. E. Mousset, Z. Wang, H. Olvera-Vargas, and O. Lefebvre, J. Hazard. Mater., 2018, 360, 552-559. https://doi.org/10.1016/j.jhazmat.2018.08.023
  11. C. R. Wang, Z. F. Hou, M. R. Zhang, J. Qi, and J. Wang, J. Chem., 2015, 2015.
  12. X. Zhu, J. Ni, J. Wei, X. Xing, and H. Li, J. Hazard. Mater., 2011, 189(1-2), 127-133. https://doi.org/10.1016/j.jhazmat.2011.02.008
  13. Y. Ouarda et al., Chemosphere, 2018, 193, 160-169. https://doi.org/10.1016/j.chemosphere.2017.11.010
  14. A. Anglada, A. Urtiaga, and I. Ortiz, J. Chem. Technol. Biotechnol., 2009, 84(12), 1747-1755. https://doi.org/10.1002/jctb.2214
  15. I. Oller, S. Malato, and J. A. Sanchez-Perez, Sci. Total Environ., 2011, 409(20), 4141-4166. https://doi.org/10.1016/j.scitotenv.2010.08.061
  16. M. Chettiar and A. P. Watkinson, Can. J. Chem. Eng., 1983, 61(4), 568-574. https://doi.org/10.1002/cjce.5450610411
  17. F. Pawlak, K. Koziol, M. Ruman, and Z. Polkowska, Monatshefte fur Chemie, 2019, 150(9), 1573-1578. https://doi.org/10.1007/s00706-019-02475-7
  18. J. N. Edokpayi, J. O. Odiyo, O. E. Popoola, and T. A. M. Msagati, Int. J. Environ. Res. Public Health, 2016, 13(4), 387. https://doi.org/10.3390/ijerph13040387
  19. M. Biel-Maeso, C. Corada-Fernandez, and P. A. LaraMartin, Water Res., 2019, 150, 129-139. https://doi.org/10.1016/j.watres.2018.11.045
  20. B. Chen et al., Water Res., 2004, 38(16), 3558-3568. https://doi.org/10.1016/j.watres.2004.05.013
  21. M. A. Alawi, I. N. Tarawneh, and Z. Ghanem, Toxin Rev., 2018, 37(2), 128-137. https://doi.org/10.1080/15569543.2017.1330271
  22. N. Z. Firouzsalari, M. Shakerkhatibi, M. Pourakbar, A. Yadeghari, G. H. Safari, and P. Sarbakhsh, J. Water Process Eng., 2019, 29, 100793. https://doi.org/10.1016/j.jwpe.2019.100793
  23. K. Ulucan-altuntas and E. Debik, 2020, 14(1), 1-13.
  24. A. Katsoyiannis and C. Samara, 2004, 38(11), 2685-2698. https://doi.org/10.1016/j.watres.2004.03.027
  25. E. B. Estrada-Arriaga et al., Sci. Total Environ., 2016, 571, 1172-1182. https://doi.org/10.1016/j.scitotenv.2016.07.118
  26. M. Clara, B. Strenn, O. Gans, E. Martinez, N. Kreuzinger, and H. Kroiss, Water Res., 2005, 39(19), 4797-4807. https://doi.org/10.1016/j.watres.2005.09.015
  27. C. Trautwein and K. Kummerer, Chemosphere, 2011, 85(5), 765-773. https://doi.org/10.1016/j.chemosphere.2011.06.057
  28. O. O. Olayinka, A. A. Adewusi, O. O. Olujimi, and A. A. Aladesida, J. Health & Pollution., 2018, 8(20), 1-12.
  29. V. Geissen et al., Int. Soil Water Conserv. Res., 2015, 3(1), 57-65. https://doi.org/10.1016/j.iswcr.2015.03.002
  30. World Health Organization (WHO), Health criteria and other supporting information-Addendum, Guidelines for Drinking-Water Quality, 1998.
  31. J. Margot, L. Rossi, D. A. Barry, and C. Holliger, Wiley Interdiscip. Rev. Water, 2015, 2(5), 457-487. https://doi.org/10.1002/wat2.1090
  32. D. Gao, H. Liang, L. Du, and J. Chen, African J. Biotechnol., 2010, 9(41), 6888-6893.
  33. A. de Wilt et al., J. Hazard. Mater., 2016, 304, 84-92. https://doi.org/10.1016/j.jhazmat.2015.10.033
  34. S. Wang and J. Wang, Environ. Technol., 2018, 39(15), 1985-1993. https://doi.org/10.1080/09593330.2017.1345989
  35. O. Rodriguez-Nava, H. Ramirez-Saad, O. Loera, and I. Gonzalez, Environ. Technol., 2016, 37(23), 2964-2974. https://doi.org/10.1080/09593330.2016.1172669
  36. C. Trellu et al., Chem. Eng. J., 2016, 306, 588-596. https://doi.org/10.1016/j.cej.2016.07.108
  37. A. Fernandes, D. Santos, M. J. Pacheco, L. Ciriaco, and A. Lopes, Sci. Total Environ., 2016, 541, 282-291. https://doi.org/10.1016/j.scitotenv.2015.09.052
  38. C. Comninellis and G. Chen, Electrochemistry for the Environment New York: Springer. 2010, 2015.
  39. A. Anglada, A. M. Urtiaga, and I. Ortiz, J. Hazard. Mater., 2010, 181(1-3), 729-735. https://doi.org/10.1016/j.jhazmat.2010.05.073
  40. Z. Frontistis, C. Brebou, D. Venieri, D. Mantzavinos, and A. Katsaounis, J. Chem. Technol. Biotechnol., 2011, 86(10), 1233-1236. https://doi.org/10.1002/jctb.2669
  41. C. A. Martinez-Huitle et al., Chem. Soc. Rev., 2006, 35(12), 1324-1340. https://doi.org/10.1039/b517632h
  42. C. R. Wang, Z. F. Hou, M. R. Zhang, J. Qi, and J. Wang, 2015, 2015.
  43. A. Katsoni, D. Mantzavinos, and E. Diamadopoulos, Water Res., 2014, 57, 76-86. https://doi.org/10.1016/j.watres.2014.03.010
  44. W. Feng, D. T. Mccarthy, R. Henry, X. Zhang, K. Zhang, and A. Deletic, Chemosphere, 2018, 213, 226-234. https://doi.org/10.1016/j.chemosphere.2018.09.038
  45. V. Schmalz, T. Dittmar, D. Haaken, and E. Worch, Water Res., 2009, 43(20), 5260-5266. https://doi.org/10.1016/j.watres.2009.08.036
  46. W. Feng, A. Deletic, Z. Wang, X. Zhang, T. Gengenbach, and D. T. McCarthy, Sci. Total Environ., 2019, 646, 1440-1447. https://doi.org/10.1016/j.scitotenv.2018.07.307
  47. I. Sires, E. Brillas, M. A. Oturan, M. A. Rodrigo, and M. Panizza, Environ. Sci. Pollut. Res., 2014, 21(14), 8336-8367. https://doi.org/10.1007/s11356-014-2783-1
  48. X. Zhu, J. Ni, J. Wei, X. Xing, H. Li, and Y. Jiang, Journal of Hazardous Materials, 2010, 184(1-3). 493-498. https://doi.org/10.1016/j.jhazmat.2010.08.062
  49. R. A. Torres, V. Sarria, W. Torres, P. Peringer, and C. Pulgarin, Water Res., 2003, 37(13), 3118-3124. https://doi.org/10.1016/S0043-1354(03)00179-9
  50. J. Singla, A. Verma, and V. K. Sangal, J. Electrochem. Soc., 2017, 164(12), E312-E320. https://doi.org/10.1149/2.0681712jes
  51. A. Urtiaga, P. Gomez, A. Arruti, and I. Ortiz, J. Chem. Technol. Biotechnol., 2014, 89(8), 1243-1250. https://doi.org/10.1002/jctb.4384
  52. L. H. Tran, P. Drogui, G. Mercier, and J. F. Blais, J. Hazard. Mater., 2009, 164(2-3), 1118-1129. https://doi.org/10.1016/j.jhazmat.2008.09.012
  53. C. Garcia-Gomez et al., J. Electroanal. Chem., 2014, 732, 1-10. https://doi.org/10.1016/j.jelechem.2014.08.032
  54. R. G. Simon et al., Chemie Ing. Tech., 2018, 90(11), 1832-1854. https://doi.org/10.1002/cite.201800081
  55. G. Crini and E. Lichtfouse, Environ. Chem. Lett., 2019, 17(1), 145-155. https://doi.org/10.1007/s10311-018-0785-9
  56. X. Liu, S. You, F. Ma, and H. Zhou, Front. Environ. Sci. Eng., 2021, 15(4), 1-10. https://doi.org/10.1007/s11783-020-1293-2
  57. J. Iniesta, P. A. Michaud, M. Panizza, G. Cerisola, A. Aldaz, and C. Comninellis, Russ. J. Electrochem., 2001, 46(23), 3573-3578.
  58. M. Panizza and G. Cerisola, Int. J. Environ. Pollut., 2006, 27(1-3), 64. https://doi.org/10.1504/IJEP.2006.010454
  59. J. T. Jasper, Y. Yang, and M. R. Hoffmann, Environ. Sci. Technol., 2017, 51(12), 7111-7119. https://doi.org/10.1021/acs.est.7b01002
  60. A. L. Giraldo, E. D. Erazo-Erazo, O. A. Florez-Acosta, E. A. Serna-Galvis, and R. A. Torres-Palma, Chem. Eng. J., 2015, 279, 103-114. https://doi.org/10.1016/j.cej.2015.04.140
  61. A. Fernandes, M. J. Pacheco, L. Ciriaco, and A. Lopes, J. Hazard. Mater., 2012, 199-200, 82-87. https://doi.org/10.1016/j.jhazmat.2011.10.074
  62. F. Feki, F. Aloui, M. Feki, and S. Sayadi, Chemosphere, 2009, 75(2), 256-260. https://doi.org/10.1016/j.chemosphere.2008.12.013
  63. Z. Ukundimana, P. I. Omwene, E. Gengec, O. T. Can, and M. Kobya, Electrochim. Acta, 2018, 286, 252-263. https://doi.org/10.1016/j.electacta.2018.08.019
  64. J. feng Peng, B. zhen Wang, Y. hui Song, P. Yuan, and Z. Liu, Ecol. Eng., 2007, 31(2), 92-97. https://doi.org/10.1016/j.ecoleng.2007.06.005
  65. P. Grafias, N. P. Xekoukoulotakis, D. Mantzavinos, and E. Diamadopoulos, Water Res., 2010, 44(9), 2773-2780. https://doi.org/10.1016/j.watres.2010.02.015
  66. I. Yahiaoui, F. Aissani-Benissad, F. Fourcade, and A. Amrane, Environ. Prog. Sustain. Energy, 2013, 33(1), 160-169. https://doi.org/10.1002/ep.11774
  67. M. G. Tavares, D. H. da S. Santos, S. J. A. Torres, W. R. O. Pimentel, J. Tonholo, and C. L. de P. e S. Zanta, Water Sci. Technol., 2016, 74(5), 1143-1154. https://doi.org/10.2166/wst.2016.278
  68. O. Serrano-Torres, J. M. Peralta-Hernandez, R. Feria-Reyes, H. Jalife-Jacobo, and S. Gutierrez-Granados, J. Hazard. Mater., 2016, 319, 78-83. https://doi.org/10.1016/j.jhazmat.2016.02.056
  69. J. D. Garcia-Espinoza, P. Mijaylova-Nacheva, and M. Aviles-Flores, Chemosphere, 2018, 192, 142-151. https://doi.org/10.1016/j.chemosphere.2017.10.147
  70. G. Perez, A. R. Fernandez-Alba, A. M. Urtiaga, and I. Ortiz, Water Res., 2010, 44(9), 2763-2772. https://doi.org/10.1016/j.watres.2010.02.017
  71. D. Mantzavinos and E. Psillakis, J. Chem. Technol. Biotechnol., 2004, 79(5), 431-454. https://doi.org/10.1002/jctb.1020
  72. A. M. Deshpande, S. Satyanarayan, and S. Ramakant, J. Environ. Eng., 2009, 135(8), 716-719. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000029
  73. B. Wang, W. Kong, and H. Ma, 2007, 146, 295-301.
  74. I. il Balcio glu Akmehmet and M. Otker, Chemosphere, 2003, 50(1), 85-95. https://doi.org/10.1016/S0045-6535(02)00534-9
  75. D. Subramaniam and A. A. Halim, 2014, 1614(1), 597-602.
  76. A. Fernandes, P. Spranger, A. D. Fonseca, M. J. Pacheco, L. Ciriaco, and A. Lopes, Appl. Catal. B Environ., 2014, 144, 514-520. https://doi.org/10.1016/j.apcatb.2013.07.054
  77. A. Fernandes et al., Environ. Sci. Pollut. Res., 2019, 26(1), 24-33. https://doi.org/10.1007/s11356-018-2650-6
  78. Y. Ge, X. C. Wang, Y. Zheng, M. Dzakpasu, J. Xiong, and Y. Zhao, 2014, 4(4), 247-258.
  79. J.M. Fontmorin, S. Huguet, F. Fourcade, F. Geneste, D. Floner, and A. Amrane, Chem. Eng. J., 2012, 195, 208-217. https://doi.org/10.1016/j.cej.2012.04.058
  80. E. Kotta, N. Kalogerakis, and D. Mantzavinos, J. Chem. Technol. Biotechnol., 2007, 82(3), 504-511. https://doi.org/10.1002/jctb.1706
  81. J. Vidal, C. Huilinir, and R. Salazar, Electrochim. Acta, 2016, 210, 163-170. https://doi.org/10.1016/j.electacta.2016.05.064
  82. C. Lutke Eversloh, N. Henning, M. Schulz, and T. A. Ternes, Water Res., 2014, 48(1), 237-246. https://doi.org/10.1016/j.watres.2013.09.035
  83. J. Radjenovic, A. Bagastyo, R. A. Rozendal, Y. Mu, J. Keller, and K. Rabaey, Water Res., 2011, 45(4), 1579-1586. https://doi.org/10.1016/j.watres.2010.11.035
  84. M. Zhou, L. Liu, Y. Jiao, Q. Wang, and Q. Tan, Desalination, 2011, 277(1-3), 201-206. https://doi.org/10.1016/j.desal.2011.04.030
  85. A. P. Buzzini, D. W. Miwa, A. J. Motheo, and E. C. Pires, Water Sci. Technol., 2006, 54(2), 207-213. https://doi.org/10.2166/wst.2006.507
  86. M. Panizza and G. Cerisola, Environ. Sci. Technol., 2004, 38(20), 5470-5475. https://doi.org/10.1021/es049730n
  87. P. Canizares, A. Beteta, C. Saez, L. Rodriguez, and M. A. Rodrigo, Chemosphere, 2008, 72(7), 1080-1085. https://doi.org/10.1016/j.chemosphere.2008.04.004
  88. P. Verlicchi, A. Galletti, M. Petrovic, and D. BarcelO, J. Hydrol., 2010, 389(3-4), 416-428. https://doi.org/10.1016/j.jhydrol.2010.06.005
  89. B. Khaled, B. Wided, H. Bechir, E. Elimame, L. Mouna, and T. Zied, Arab. J. Chem., 2015, 12(8), 1848-1859. https://doi.org/10.1016/j.arabjc.2014.12.012
  90. R. Shankar, L. Singh, P. Mondal, and S. Chand, Desalin. Water Treat., 2014, 52(40-42), 7711-7722. https://doi.org/10.1080/19443994.2013.831782
  91. A. H. Sulaymon and A. H. Abbar, Electrolysis, 2012, 17.
  92. P. H. Britto-Costa and L. A. M. Ruotolo, Brazilian J. Chem. Eng., 2012, 29(4), 763-773. https://doi.org/10.1590/S0104-66322012000400008
  93. E. M. Abou-Taleb, M. S. Hellal, and K. H. Kamal, Water Environ. J., 2021, 35(1), 259-268. https://doi.org/10.1111/wej.12624
  94. H. Monteil, Y. Pechaud, N. Oturan, C. Trellu, and M. A. Oturan, Chem. Eng. J., 2021, 404, 127048. https://doi.org/10.1016/j.cej.2020.127048
  95. M. Shestakova and M. Sillanpa, Rev. Environ. Sci. Bio/Technology, 2017, 16(2), 223-238. https://doi.org/10.1007/s11157-017-9426-1