• 제목/요약/키워드: biological molecules

검색결과 947건 처리시간 0.024초

Recent advances in developing molecular tools for targeted genome engineering of mammalian cells

  • Lim, Kwang-Il
    • BMB Reports
    • /
    • 제48권1호
    • /
    • pp.6-12
    • /
    • 2015
  • Various biological molecules naturally existing in diversified species including fungi, bacteria, and bacteriophage have functionalities for DNA binding and processing. The biological molecules have been recently actively engineered for use in customized genome editing of mammalian cells as the molecule-encoding DNA sequence information and the underlying mechanisms how the molecules work are unveiled. Excitingly, multiple novel methods based on the newly constructed artificial molecular tools have enabled modifications of specific endogenous genetic elements in the genome context at efficiencies that are much higher than that of the conventional homologous recombination based methods. This minireview introduces the most recently spotlighted molecular genome engineering tools with their key features and ongoing modifications for better performance. Such ongoing efforts have mainly focused on the removal of the inherent DNA sequence recognition rigidity from the original molecular platforms, the addition of newly tailored targeting functions into the engineered molecules, and the enhancement of their targeting specificity. Effective targeted genome engineering of mammalian cells will enable not only sophisticated genetic studies in the context of the genome, but also widely-applicable universal therapeutics based on the pinpointing and correction of the disease-causing genetic elements within the genome in the near future.

Dynamics of C60 Molecules in Biological Membranes: Computer Simulation Studies

  • Chang, Rak-Woo;Lee, Ju-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3195-3200
    • /
    • 2010
  • We have performed molecular dynamics simulations of atomistic models of $C_{60}$ molecules and DMPC bilayer membranes to study the static and dynamic effects of carbon nanoparticles on biological membranes. All four $C_{60}$-membrane systems were investigated representing dilute and concentrated solutions of $C_{60}$ residing either inside or outside the membrane. The concentrated $C_{60}$ molecules in water phase start forming an aggregated cluster. Due to its heavy mass, the cluster tends to adhere on the surface of the bilayer membrane, hindering both translational and rotational diffusion of individual $C_{60}$. On the other hand, once $C_{60}$ molecules accumulate inside the membrane, they are well dispersed in the central region of the bilayer membrane. Because of the homogeneous dispersion of $C_{60}$ inside the membrane, each leaflet is pushed away from the center, making the bilayer membrane thicker. This thickening of the membrane provides more room for both translational and rotational motions of $C_{60}$ inside the membrane compared to that in the water region. As a result, the dynamics of $C_{60}$ inside the membrane becomes faster with increasing its concentration.

Biologically active compounds from natural and marine natural organisms with antituberculosis, antimalarial, leishmaniasis, trypanosomiasis, anthelmintic, antibacterial, antifungal, antiprotozoal, and antiviral activities

  • Asif, Mohammad
    • 셀메드
    • /
    • 제6권4호
    • /
    • pp.22.1-22.19
    • /
    • 2016
  • The biologically active compounds derived from different natural organisms such as animals, plants, and microorganisms like algae, fungi, bacteria and merine organisms. These natural compounds possess diverse biological activities like anthelmintic, antibacterial, antifungal, antimalarial, antiprotozoal, antituberculosis, and antiviral activities. These biological active compounds were acted by variety of molecular targets and thus may potentially contribute to several pharmacological classes. The synthesis of natural products and their analogues provides effect of structural modifications on the parent compounds which may be useful in the discovery of potential new drug molecules with different biological activities. Natural organisms have developed complex chemical defense systems by repelling or killing predators, such as insects, microorganisms, animals etc. These defense systems have the ability to produce large numbers of diverse compounds which can be used as new drugs. Thus, research on natural products for novel therapeutic agents with broad spectrum activities and will continue to provide important new drug molecules.

키틴과 키토산 분해 미생물 유래 효소의 식품에의 이용 (Food application of enzymes derived from microorganisms degrading chitin and chitosan)

  • 박제권
    • 식품과학과 산업
    • /
    • 제53권1호
    • /
    • pp.43-55
    • /
    • 2020
  • Most reports demonstrated the substrate specificity-based kinetic properties of chitin or chitosan degrading enzymes. However, there is virtually less information on the high quality and quantity production of chitin or chitosan hydrolysates having a larger than (GlcN)7 from the hydrolysis of high molecular weight chitosan using specific enzymes and their biological activity. Therefore, the production of such molecules and the discovery of such enzyme sources are very important. Fortunately, the author has established a mass production method of chitosan hydrolysates (GlcN)n, n=2-13 that have been characterized as a potent antioxidant substance, as well as antifungal and antibacterial activities against Penicillium species and highly selective pathogenic bacteria. In addition, preclinical studies using (GlcN)n, n=5-25 demonstrated that these molecules played a very important role in maintaining biometric balance. Collectively, it is implicated that the application of these mixed substances to foods with significant biological activity is very encouraging.

Synthesis and Biological Evaluation of Heterocyclic Ring-substituted Chalcone Derivatives as Novel Inhibitors of Protein Tyrosine Phosphatase 1B

  • Chen, Zhen-Hua;Sun, Liang-Peng;Zhang, Wei;Shen, Qiang;Gao, Li-Xin;Li, Jia;Piao, Hu-Ri
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1505-1508
    • /
    • 2012
  • Protein tyrosine phosphatase 1B (PTP1B) is a key factor in negative regulation of the insulin pathway, and is a promising target for the treatment of type-II diabetes, obesity and cancer. Herein, compound ($\mathbf{4}$) was first observed to have moderate inhibitory activity against PTP1B with an $IC_{50}$ value of $13.72{\pm}1.53{\mu}M$. To obtain more potent PTP1B inhibitors, we synthesized a series of chalcone derivatives using compound ($\mathbf{4}$) as the lead compound. Compound $\mathbf{4l}$ ($IC_{50}=3.12{\pm}0.18{\mu}M$) was 4.4-fold more potent than the lead compound $\mathbf{4}$ ($IC_{50}=13.72{\pm}1.53{\mu}M$), and more potent than the positive control, ursolic acid ($IC_{50}=3.40{\pm}0.21{\mu}M$). These results may help to provide suitable drug-like lead compounds for the design of inhibitors of PTP1B as well as other PTPs.

Development of Cholinesterase Inhibitors using 1-Benzyl Piperidin-4-yl (α)-Lipoic Amide Molecules

  • Lee, Seung-Hwan;Kim, Beom-Cheol;Kim, Jae-Kwan;Lee, Hye Sook;Shon, Min Young;Park, Jeong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1681-1686
    • /
    • 2014
  • A series of hybrid molecules between (${\alpha}$)-lipoic acid (ALA) and 4-amino-1-benzyl piperidines were synthesized and their in vitro cholinesterase (acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)) inhibitory activities were evaluated. Even though the parent compounds did not exhibit any inhibitory activity against cholinesterase (ChE) with the exception of compound 14 ($IC_{50}=255.26{\pm}4.41$ against BuChE), all hybrid molecules demonstrated BuChE inhibitory activity. Some hybrid compounds also displayed AChE inhibitory activity. Specifically, compound 17 was shown to be an effective inhibitor against both AChE ($IC_{50}=1.75{\pm}0.30{\mu}M$) and BuChE ($IC_{50}=5.61{\pm}1.25{\mu}M$) comparable to galantamine ($IC_{50}=1.7{\pm}0.9{\mu}M$ against AChE and $IC_{50}=9.4{\pm}2.5{\mu}M$ against BuChE). Inhibition kinetic studies using compound 17 indicated a mixed inhibition type for AChE and a noncompetitive inhibition type for BuChE. Its binding affinity ($K_i$) values to AChE and BuChE were $3.8{\pm}0.005{\mu}M$ and $7.0{\pm}0.04{\mu}M$, respectively.

Molecules of the Tumor Necrosis Factor (TNF) Receptor and Ligand Superfamilies: Endless Stories

  • Kwon, Byung-Suk;Kwon, Byoung-Se
    • BMB Reports
    • /
    • 제32권5호
    • /
    • pp.419-428
    • /
    • 1999
  • Tumor necrosis factor (TNF) receptor members have unique structures composed of 2-4 cysteine - rich pseudorepeats in the extracellular domain. On ligation by trimeric ligand molecules, oligomerization of three receptor molecules occurs, which in turn activates the receptor and recruits intracellular signaling molecules to the cytoplasmic tail to initiate biological events. Recently, the numbers of tumor necrosis factor receptor and ligand family members have been rapidly expanding. Functional characterization of the new members has indicated redundant roles with other known members as well as provided insights into novel functions. In particular, identification of soluble decoy receptors which have the ability to bind multiple ligands highlights a complex control mechanism of immune responses by these molecules. Studies of the new members have also revealed that the TNF receptor and ligand family members play an important role in other than the immune system.

  • PDF