• Title/Summary/Keyword: biological cells

Search Result 4,899, Processing Time 0.035 seconds

The Beneficial Effects of Extract of Pinus densiflora Needles on Skin Health (솔잎추출물의 피부건강 개선효과)

  • Choi, Jieun;Kim, Woong;Park, Jaeyoung;Cheong, Hyeonsook
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.208-217
    • /
    • 2016
  • Pinus densiflora Sieb. et Zucc. (P. densiflora) contains several phenolic compounds that exhibit biological activities, such as antimicrobial, antioxidant, and antihypertensive effects. However, the anti-inflammatory effect of P. densiflora on skin has rarely been reported. Malassezia furfur (M. furfur) is a commensal microbe that induces skin inflammation and is associated with several chronic disorders, such as dandruff, seborrheic dermatitis, papillomatosis, and sepsis. The aim of our study was to identify the anti-inflammatory effects of P. densiflora needle extracts on skin health subjected to M. furfur-induced inflammation. The methanolic extract of the pine needles was partitioned into n-hexane, EtOAc, n-BuOH, and water layers. We measured the anti-inflammatory effects (in macrophages) as well as the antioxidant, antifungal, and tyrosinase inhibitory activity of each of these layers. The antioxidant activity of the individual layers was in the order EtOAc layer > n-BuOH layer > water layer. Only the n-BuOH, EtOAc, and n-hexane layers showed antifungal activity. Additionally, all the layers possessed tyrosinase inhibition activity similar to that of ascorbic acid, which is used as a commercial control. The EtOAc layer was not cytotoxic toward the RAW 264.7 cell line. Interleukin 1 beta and tumor necrosis factor (TNF)-α expression levels in M. furfur-stimulated RAW 264.7 cells treated with the EtOAc layer were decreased markedly compared to those in cells treated with the other layers. Taken together, we believe that the needle extracts of P. densiflora have potential application as alternative anti-inflammatory agents or cosmetic material for skin health improvement.

Effect of Lead Acetate on Pancreatico-biliary Secretion (납(Lead)이 취외분비 기능에 미치는 영향)

  • Sheen, Yhun-Yhong;Kim, Won-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.17 no.1 s.28
    • /
    • pp.17-25
    • /
    • 1981
  • No evidence has accumulated that lead compound is an essential component for biological function in animals. Lead is absorbed primarily through the epithelial mucosal cells in duodenum and the absorption can be enhanced by the substances which bind lead and increase its solubility. Iron, zinc and calcium ions, however, decrease the absorption of lead without affecting its solubility, probably by competing for shared absorptive receptors in the intestinal mucosa. Therefore, the absorption of lead is increased in iron deficient animals. Lead shows a strong affinity for ligands such as phosphate, cysteinyl and histidyl side chains of proteins, pterins and porphyrins. Hence lead can act on various active sites of enzymes, inhibiting the enzymes which has functional sulfhydryl groups. lead inhibits the activity of ${\delta}$-aminolevulinic acid dehydratase for the biosynthesis of hemoproteins and cytochrome, which catalyzed the synthesis of monopyrrole prophobilinogen from ${\delta}$-aminolevulinic acid. Accordingly lead decrease hepatic cytochrome p-450 content, resulting an inhibition of the activity of demethylase and hydroxylase in liver. Little informations are available on the effect of lead on digestive system although the catastrophic effects of lead intoxication are well documented. The present study was, therefore, attempted to investigate the effect of lead on pancreaticobiliary secretion in rats. Albino rats of both sexes weighing $170{\sim}230g$ were used for this study. The animals were divided into one control and three treated groups, i.e., control (physiologic saline 1.5ml/kg i.p.), lead acetate $(l0{\mu}mole/kg/day\;i.p.)$, $Pb(Ac)_2$ and EDTA$(each\;10{\mu}mole/kg/day\;i.p.)$, $Pb(Ac)_2$ and $FeSO_4(each\;l0{\mu}mole/kg/day\;hp)$. The pancreatico-biliary juice was collected under urethane anesthesia, and activities of amylase and lipase were determined by employing Sumner's and Cherry and Crandall's methods. The summarized results are follows. 1) In the experiment for acute toxicity of lead acetate, 20% of mortality was observed in rat treated with lead acetate as well as inhibition of the activity of amylase in the juice at the 3 rd day of the treatment. 2) No increases in body weight were observed in rats treated with lead acetate, while in control group the significant increases were observed. However, the body weights of animals were increased in the group lead acetate plus EDTA or $FeSO_4$. 3) Lead acetate decreased significantly the volume of pancreatico-biliary juice whereas additional treatment of EDTA and $FeSO_4$ prevented it. 4) Total activity of amylase was markedly reduced due to lead acetate treatment, but no change was showed following additional treatment with EDTA and $FeSO_4$. 5) No changes in the cholate and lipase output were observed in rats treated with lead acetate as compared with that of control rats. 6) Increase in bilirubin output in rats treated with lead acetate was shown on the 2nd and 3rd weeks treatment. 7) In the case of in vitro experiment, lead acetate also markedly inhibited release of amylase from pancreatic fragment. 8) Histologic finding indicated that acini vacuolation was induced in the pancreatic tissue of rat treated with lead acete. From the above results, it might be concluded that lead acetate decreases the volume of pancreatico-biliary secretion and inhibits the amylase activity, by acting directly on pancreatic cells.

  • PDF

Enhancement of Anti-inflammatory Activity by Fermentation of Sargassum siliquanstrum (꽈배기모자반의 발효를 통한 항염증 활성의 증진)

  • Lee, Sol-Ji;Lee, Dong-Geun;Kim, Mihyang;Kong, Chang-Suk;Yu, Ki-Hwan;Kim, Yuck-Young;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.318-324
    • /
    • 2016
  • This study was aimed to verify anti-inflammatory activity of fermented Sargassum siliquanstrum with lactic acid bacteria. Anti-inflammatory activities were compared by measuring the amount of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and suppressive effect on inducible nitric oxide synthase (iNOS) expression in stably transfected RAW 264.7 cells. Inhibitory activities of NO production and iNOS expression were measured after confirmation of NO radical scavenging activities. Fermentation increased NO radical scavenging activities from 7.6% to 15.2% compared to non-fermented condition, and fermentation with Lactobacillus sp. SH-1 was the most efficient. Fermentation without algal debris showed better NO radical scavenging activities than that with debris. Fermentation with Lactobacillus sp. SH-1 also showed the highest NO production inhibitory activity (64.1%) in LPS-stimulated RAW 264.7 cells. LPS-induced iNOS expression was diminished to 28.6, 35.6, 49.4 and 58.5 at 50, 100, 500 and 1,000 μg/ml, respectively, by fermentation with Lactobacillus sp. SH-1. According to MTT assay, fermented S. siliquanstrum did not influence the cell viability at all concentrations tested, meaning no or less cytotoxicity. These results suggest that S. siliquanstrum has NO radical scavenging activity and anti-inflammatory activity. Thus biological activities of S. siliquanstrum were upgraded by fermentation, which could be used for the development of functional foods.

Quality Characteristics and Biological Activity of Fermented Black Garlic with Probiotics (Probiotics를 이용한 흑마늘 발효물의 품질특성 및 생리활성)

  • Tak, Hyun-Min;Kim, Gyeong-Min;Kim, Jong-Su;Hwang, Cho-Rong;Kang, Min-Jung;Shin, Jung-Hye
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.549-557
    • /
    • 2014
  • This study examined the quality characteristics of fermented black garlic (BG) with probiotics. Nine strains of probiotics were tested in media containing 20% BG. Four of the strains grew well in the BG media: Lactobacillus rhamnosus, L. paracasei subsp. paracasei, L. casei, and L. plantarum. These four strains were used to make 10, 20, and 30% BG fermented product, respectively. The number of viable cells, pH, acidity, S-allyl cysteine (SAC) concentration, and nitric oxide (NO) and reactive nitrogen species (ROS) generation in Raw 264.7 macrophage cells were measured. L. plantarum showed the best growth of all the strains in the BG media. The pH of all the samples decreased during fermentation, and the acidity increased acidity. However, they did not differ significantly from the pH and acidity of the control. In all four strains, the SAC content did not differ before and after fermentation. However, the SAC content increased, depending on the BG concentration. NO production was inhibited in the L. rhamnosus inoculation strain compared to the other strains. ROS generation was also significantly inhibited in the L. plantarum inoculation strain compared to the other strains. The results show that the characteristics of BG fermentation products are determined by the fermentation strain. Therefore, fermentation products with particular characteristics can be produced using a single strain or mixed strains.

Sexual Reproduction in Unicellular Green Alga Chlamydomonas (수염녹두말속(Chlamydomonas) 단세포 녹조의 유성생식)

  • Lee, Kyu Bae
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.100-121
    • /
    • 2017
  • The sexual reproduction of the unicellular green alga Chlamydomonas is reviewed for a comprehensive understanding of the complex processes. The sexual life cycle of C. reinhardtii is distinguished into five main stages: gametogenesis, gamete activation, cell fusion, zygote maturation, and meiosis and germination. Gametogenesis is induced by nitrogen starvation in the environment. C. reinhardtii has two mating types: mating type plus ($mt^+$) and mating type minus ($mt^-$), controlled by a single complex mating type locus ($MT^+$ or $MT^-$) on linkage group VI. In the early gametogenesis agglutinins are synthesized. The $mt^+$ and $mt^-$ agglutinins are encoded by the autosomal genes SAG1 (Sexual AGglutination1) and SAD1 (Sexual ADhesion1), respectively. The agglutinins are responsible for the flagellar adhesion of the two mating type of gametes. The flagellar adhesion initiates a cAMP mediated signal transduction pathways and activates the flagellar tips. In response to the cAMP signal, mating structures between two flagella are activated. The $mt^+$ and $mt^-$ gamete-specific fusion proteins, Fus1 and Hap2/Gcs1, are present on the plasma membrane of the two mating structures. Contact of the two mating structures leads to develop a fertilization tubule forming a cytoplasmic bridge between the two gametes. Upon fusion of nuclei and chloroplasts of $mt^+$ and $mt^-$ cells, the zygotes become zygospores. It is notable that the young zygote shows uniparental inheritance of chloroplast DNA from the $mt^+$ parent and mitochondrial DNA from the $mt^-$ parent. Under the favorable conditions, the zygospores divide meiotically and germinate and then new haploid progenies, vegetative cells, are released.

Enhancing the Effects of Zerumbone on THP-1 Cell Activation (단핵구세포주의 활성에 미치는 Zerumbone의 영향)

  • Lee, Min Ho;Kim, Sa Hyun;Ryu, Sung Ryul;Lee, Pyeongjae;Moon, Cheol
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Zerumbone is a major component of the essential oil from Zingiber zerumbet Smith, which is a kind of wild ginger. In addition, various biological functions, such as liver protection, pain relief, atherosclerosis, and antimicrobial activity have been reported. It is also known to be effective in the proliferation of immune cells and the expression of cytokines. In this study, we investigated the effects of zerumbone on monocyte activation. First, it was confirmed that the proliferation of THP-1 cells was increased by zerumbone. The strongest increase in THP-1 proliferation after lipopolysaccharide treatment was observed at $5{\mu}M$ zerumbone treatment, and the increase of cell proliferation without lipopolysaccharide was the highest at $10{\mu}M$. Conversely, when treated with $50{\mu}M$ zerumbone, a rapid decrease of proliferation was observed regardless of the presence of lipopolysaccharide (LPS). The phosphorylation of signaling protein, Erk, induced by LPS was also increased by zerumbone. The strongest increase in phosphorylation was observed when treated with $50{\mu}M$ of zerumbone with reduced proliferation. The activity of transcription factor $NF-{\kappa}B$ was not significantly altered by zerumbone alone, but increased when treated with lipopolysaccharide. Furthermore, the transcription of the inflammatory cytokines $TNF-{\alpha}$ and IL-8, which are regulated by $NF-{\kappa}B$, is also increased by zerumbone. These results suggest that zerumbone can enhance the proliferation and activity of monocytes. Furthermore, it is believed that zerumbone can enhance rthe immune responses through increased monocyte activity in bacterial infections with LPS, thereby helping to treat effective bacteria.

Modulation of Cellulalr Quinone Reductase Inducibility by Roasting Treatment and Acid Hydrolysis of Perilla (들깨의 볶음처리와 산가수분해에 의한 세포모델계 Quinone Reductase 활성유도능의 변화)

  • Hong, Eun-Young;Kang, Hee-Jung;Kwon, Chong-Suk;Nam, Young-Jung;Suh, Myung-Ja;Kim, Jong-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.186-192
    • /
    • 1997
  • Increased activities of phase 2 enzymes including quinone reductase(QR) have been reported to be associated with protection of animals from neoplastic, mutagenic, and other toxic effects of many carcinogens. In previous study, we found that methanol extract of roasted and defatted perilla meal induced the activity of quinone reductase, an anticarcinogenic marker enzyme, in murine hepalc1c7 cells. Current study showed that unroasted perilla had a limited QR-inducing activity, suggesting that roasting cause the generation of active component(s). Thus we hypothesized that QR inducer in perilla might be covalently linked to sugar moiety and released during roasting process. Methanol extract of defatted raw perilla was subject to acid treatment in order to hydrolyze the potential sugar moiety. Prolonged hydrolysis of methanol extract of defatted raw perilla at $98{\sim}100^{\circ}C$ increased the ability to induce cytosolic QR activity of hepalclc7 cells. Furthermore roasting at 180 and $200^{\circ}C$ resulted in significant induction of QR activity. The result strongly support the idea that QR inducer(s) is present in bound form in raw perilla and released during roasting. Cellular QR activity was induced proportionately with the increase of concentration of methanol extract of roasted perilla. The induction of QR by defatted perilla was also examined in the cytosols of liver, small intestine, stomach, lung and kidney of male ICR mice. Induction patterns showed specificity with respect to target tissue and roasting of perilla. Unroasted perilla meal (defatted) significantly induced QR in liver and lung, while roasted perilla meal induced QR in liver and stomach. The observation that raw perilla showed similar QR induction patterns to roasted perilla is consistent with our proposal that QR inducer(s) is present in bound form and released by physical and chemical treatments as digestive or microbial enzymes could release the inducers from inactive glycoside forms in gastrointestinal tract of mice. In conclusion, perilla could exert protective effect against chemically induced carcinogenesis by inducing phase 2 enzymes in biological systems regardless of chemical and physical process such as roasting.

  • PDF

Effect of ethanol extract of Lotus Rhizome and node of Lotus Rhizome (연근과 우절 에탄올 추출물의 향장효능 검증)

  • Jang, Young-Ah;Park, So-Hyun;Kim, Bo-Ae;Park, Jong-Yi;Jeoung, Young-Ok;Lee, Jin-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.657-665
    • /
    • 2017
  • This study is for checking the possibility of Lotus Rhizome and node of Lotus Rhizome as cosmetic materials. For this we carried out biological active evaluation about anti-oxidant, anti-inflammatory and anti-wrinkle by using ethanol extract of Lotus Rhizome and node of Lotus Rhizome. We extracted Lotus Rhizome and node of Lotus Rhizome with 95% ethanol and then in order to evaluate anti-oxidant activity we treated samples by concentrations (100, 500, 1000) ${\mu}g/mL$ and carried out 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and The activity of 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) cation radical scavenging. Also, in order to evaluate effect of anti-wrinkle we carried out evaluation of Elastase inhibitory activity. To evaluate effect of anti-inflammatory we evaluated toxicity of samples through MTT assay with a macrophage (Raw 264.7 cells) and measured nitric oxide production inhibitory activity. As a result, DPPH radical scavenging activity of Lotus Rhizome and node of Lotus Rhizome at $1000{\mu}g/mL$ was 66.7% and 99.5%, respectively and ABTS + radical scavenging activity was 51.2% and 98.3% at the same concentration, respectively. Elastase inhibitory activity results showed that the nodes of the Lotus Rhizom extract excellent anti-wrinkle efficacy than Lotus Rhizom. Node of Lotus Rhizome showed higher anti-wrinkle activity than the positive the control group BHT at $1000{\mu}g/mL$ concentration. According to the result of nitric oxide production inhibitory activity, Lotus Rhizom showed 55.8% effect and nodes of the Lotus Rhizom showed 66.6% effect respectively. This showed that effect of anti-inflammatory was greater in nodes of the Lotus Rhizom extracts. As a result it suggests that Lotus Rhizome and node of Lotus Rhizome extracts can be used as natural substance of cosmetics which are safe in antioxidant, anti-inflammatory, and anti-wrinkle.

Cell Protective Effects of Enzymatic Hydrolysates of Citrus Peel Pectin (귤피 펙틴 유래 효소적 가수분해물의 세포 보호 효과)

  • Kwon, Soon Woo;Ko, Hyun Ju;Bae, Jun Tae;Kim, Jin Hwa;Lee, Geun Soo;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.75-85
    • /
    • 2016
  • Pectin, a naturally occurring polysaccharide, has in recent years attracted considerable attention. Its benefits are increasingly appreciated by scientists and consumers due to its safety and usefulness. The chemistry and gel-forming characteristics of pectin have enabled to be used in pharmaceutical industry, health promotion and treatment. Yet, it has been rarely used in cosmetics because of its incompatibility with many cosmetic ingredients, including alcohols, and unstable viscosity of pectin gels under various pH and salt conditions. However, low-molecular-weight pectin oligomers have excellent biological activities, and depolymerization of pectin to produce cosmetic ingredients would be very useful. In this study, we attempted the development of cosmetic ingredients using pectin with an excellent effect on human skin. We developed a bio-conversion process that uses enzymatic hydrolysis to produce pectin hydrolysates containing mainly low-molecular-weight pectin oligomers. Gel permeation chromatography was used to determined the ratio of hydrolysis. The molecular weight of the pectin hydrolysates obtained varied between 200 and 2,700 Da. The two newly developed low-molecular-weight pectin hydrolysates, LMPH A and B, had higher anti-oxidative activities than pectin or D-galacturonic. Exposure to UVB radiation induces apoptotic cell death in epidermal cells. Annexin V binding and propidium iodide uptake were measured by flow cytometry to evaluate UVB-induced cell death in HaCaT cells. Both LMPH A and B reduced UVB-induced cell death and increased cell proliferation by 22% and 30% at 0.5% concentration respectively, while pectin had no significant activity. In conclusion, this study suggests that the newly developed low-molecular-weight pectin hydrolysates can be used as safe and biologically active cosmetic ingredients.

Identification of the Pig β-1,3-N-acetylglucosaminyltransferase 1 (pB3GNT1) that is Involved in Poly-N-acetyllactosamine (poly-LacNAc) Synthesis (Poly-N-acetyllactosamine (poly-LacNAc) 합성에 관여하는 돼지 β-1,3-N-acetylglucosaminyltransferase I (pB3GNT1) 유전자 동정)

  • Kim, Ji-Youn;Hwang, Hwan-Jin;Chung, Hak-Jae;Hochi, Shinichi;Park, Mi-Ryung;Byun, Sung June;Oh, Keon Bong;Yang, Hyeon;Kim, Kyung-Woon
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.389-397
    • /
    • 2018
  • The structure of glycan residues attached to glycoproteins can influence the biological activity, stability, and safety of pharmaceutical proteins delivered from transgenic pig milk. The production of therapeutic glycoprotein in transgenic livestock animals is limited, as the glycosylation of mammary gland cells and the production of glycoproteins with the desired homogeneous glycoform remain a challenge. The ${\beta}$-1,3-N-acetylglucosaminylatransferase1 (B3GNT1) gene is an important enzyme that attaches N-acetylglucosamine (GlcNAc) to galactose (Gal) residues for protein glycosylation; however, there is limited information about pig glycosyltransferases. Therefore, we cloned the pig B3GNT1 (pB3GNT1) and investigated its functional properties that could attach N-acetylglucosamine to galactose residue. Using several different primers, a partial pB3GNT1 mRNA sequence containing the full open reading frame (ORF) was isolated from liver tissue. The ORF of pB3GNT1 contained 1,248 nucleotides and encoded 415 amino acid residues. Organ-dependent expression of the pB3GNT1 gene was confirmed in various organs from adult and juvenile pigs. The pB3GNT1 mRNA expression level was high in the muscles of the heart and small intestine but was lower in the lungs. For functional characterization of pB3GNT1, we established a stable expression of the pB3GNT1 gene in the porcine kidney cell line (PK-15). As a result, it was suggested that the glycosylation pattern of pB3GNT1 expression in PK-15 cells did not affect the total sialic acid level but increased the poly N-acetyllactosamine level. The results of this study can be used to produce glycoproteins with improved properties and therapeutic potential for the generation of desired glycosylation using transgenic pigs as bioreactors.