• Title/Summary/Keyword: biological activated carbon

Search Result 222, Processing Time 0.022 seconds

The study of analysis of mutagen in drinking water (음용수 중 변이원성 물질(MX)에 관한 연구)

  • Yoo, Eun-Ah;Won, Jung-In
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.290-300
    • /
    • 2006
  • Disinfection by-products(DBPs), such as volatile trihalomethanes and the nonvolatile organochlorine acids, created by chlorination have been extensively studied. However MX which contributes 20-50% of the mutagenic activity in drinking water began to people's attention since 1990. Its chemical name is 3-chloro-4-dichloromethyl-5-hydroxy-2(5H)-furanone. According to WHO guidelines its concentration should be controlled, but its value has not been set up. Due to analytical difficulties in measuring this compound at such a low concentrations and lack of information on toxicity to human. Because concentration (ng/L) of MX in drinking water is low traditional testing methods are ineffective. Therefore this study compared LLE and SPE and have chosen SPE to improve preconcentration. MX has been identified in chlorinated drinking water samples in several countries but not in korea Therefore this study analyzed concentration of MX in different water sources and in spring water. This study examined the causes of changing MX content. Chlorine dosage, seasons, water temperature and distance from the source was all discoverd to be relavant. MX was analyzed in various treatment to find optimum disinfection methods. The outcome was that the concentration of MX was minimized when using biological activated carbon-O3 and granular activated carbon.

Characteristics of Biodegradation of Geosmin using BAC Attached Bacteria in Batch Bioreactor (정수처리용 생물활성탄(BAC) 부착 박테리아를 이용한 회분식 반응기에서의 Geosmin 생분해 특성)

  • Son, Hee-Jong;Jung, Chul-Woo;Choi, Young-Ik;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.699-705
    • /
    • 2010
  • In this study, three different biological activated carbons (BACs) were prepared from activated carbons made of each coal (F400, Calgon), coconut (Samchully) and wood(Pica, Picabiol) which were run for two and half years in the pilot plant. The attached bio-film microorganisms in and on the BACs were isolated and identified. The results showed that nine different bacteria species (Chryseomonas luteola, Stenotrophomonas maltophilia, Pseudomonas vesicularis, Aeromonas hydrophila, Spingomonas paucimobilis, Agrobacterium radiobacter, Pseudomonas fluorescens, Spirillum spp., and Pasteurella haemolytica) were isolated and identified, the dominant species was Pseudomonas sp. that had occupied 56.5%. More specifically, it was observed that the populations of the microorganisms deceased in the order: Pasteurella haemolytica (18.9%) > Chryseomonas luteola (4.0%) > Agrobacterium radiobacter (3.5%) > Aeromonas hydrophila (2.0%) in and on the BACs. After isolating of 9 species of biofilm microorganisms, the growth curve for the biomass was investigated. During 24~96 hours, the biomass has the highest concentration, and activity of the biomass was the best to uptake geosmin as carbon resources. The operation temperatures for investigating the biodegradation of geosmin were set at $4^{\circ}C$ and $25^{\circ}C$. Pseudomonas vesicularis, Pseudomonas fluorescens, Agrobacterium radiobacter and Stenotrophomonas maltophilia played a maior role in removing the target compound as geosmin. However, geosmin was not biodegraded well by Chryseomonas luteola, Spingomonas paucimobilis, and Spirillum spp.. It is also interesting to evaluate kinetics of biodegradability of geosmin. The first-order rate constants for biodegradability of geosmin at $4^{\circ}C$ and $25^{\circ}C$ were $0.00006{\sim}0.0002\;hr^{-1}$ and $0.0043{\sim}0.0046\;hr^{-1}$ respectively. Higher water temperature produced better geosmin removal rates. When concentrations of geosmin increased from 10 to 10,000 ng/L, the rate constants for biodegradability of geosmin increased from 0.0003 to $0.0882\;hr^{-1}$. As described earlier, higher geosmin concentration in the reactor produced higher rate constant.

Effect of precipitation on soil respiration in a temperate broad-leaved forest

  • Jeong, Seok-Hee;Eom, Ji-Young;Park, Joo-Yeon;Chun, Jung-Hwa;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.77-84
    • /
    • 2018
  • Background: For understanding and evaluating a more realistic and accurate assessment of ecosystem carbon balance related with environmental change or difference, it is necessary to analyze the various interrelationships between soil respiration and environmental factors. However, the soil temperature is mainly used for gap filling and estimation of soil respiration (Rs) under environmental change. Under the fact that changes in precipitation patterns due to climate change are expected, the effects of soil moisture content (SMC) on soil respiration have not been well studied relative to soil temperature. In this study, we attempt to analyze relationship between precipitation and soil respiration in temperate deciduous broad-leaved forest for 2 years in Gwangneung. Results: The average soil temperature (Ts) measured at a depth of 5 cm during the full study period was $12.0^{\circ}C$. The minimum value for monthly Ts was $-0.4^{\circ}C$ in February 2015 and $2.0^{\circ}C$ in January 2016. The maximum monthly Ts was $23.6^{\circ}C$ in August in both years. In 2015, annual precipitation was 823.4 mm and it was 1003.8 mm in 2016. The amount of precipitation increased by 21.9% in 2016 compared to 2015, but in 2015, it rained for 8 days more than in 2016. In 2015, the pattern of low precipitation was continuously shown, and there was a long dry period as well as a period of concentrated precipitation in 2016. 473.7 mm of precipitation, which accounted for about 51.8% of the precipitation during study period, was concentrated during summer (June to August) in 2016. The maximum values of daily Rs in both years were observed on the day when precipitation of 20 mm or more. From this, the maximum Rs value in 2015 was $784.3mg\;CO_2\;m^{-2}\;h^{-1}$ in July when 26.8 mm of daily precipitation was measured. The maximum was $913.6mg\;CO_2\;m^{-2}\;h^{-1}$ in August in 2016, when 23.8 mm of daily precipitation was measured. Rs on a rainy day was 1.5~1.6 times higher than it without precipitation. Consequently, the annual Rs in 2016 was about 12% higher than it was in 2015. It was shown a result of a 14% increase in summer precipitation from 2015. Conclusions: In this study, it was concluded that the precipitation pattern has a great effect on soil respiration. We confirmed that short-term but intense precipitation suppressed soil respiration due to a rapid increase in soil moisture, while sustained and adequate precipitation activated Rs. In especially, it is very important role on Rs in potential activating period such as summer high temperature season. Therefore, the accuracy of the calculated values by functional equation can be improved by considering the precipitation in addition to the soil temperature applied as the main factor for long-term prediction of soil respiration. In addition to this, we believe that the accuracy can be further improved by introducing an estimation equation based on seasonal temperature and soil moisture.

Changes of Microbial Community Associated with Construction Method and Maintenance Practise on Soil Profile in Golf Courses (지반 조성과 관리방법에 따른 골프장 토양내 미생물 군집의 변화)

  • Moon, Kyung-Hee;Kim, Ki-Dong;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.219-228
    • /
    • 2009
  • The construction procedures and artificial turf maintenance program on golf course definitely influence on the distortion of its environment. Soil microbial communities in soil profile were affected directly by those practises on turf areas. In Jeju island, the environmental impact assessment has been required to apply the first quality class granular activated carbon(GAC), which has a high absorbent character to agricultural chemicals, on the soil profiles of golf green system to reduce the pesticide leaching to ground water. This research was carried out to analyze the changes of microbial communities and chemical properties on soil profiles where GAC had been applied at the construction stage at two golf courses in Jeju. The changes of soil microbial population and chemical properties associated with construction methods of soil profile and agrochemical management program were analyzed by monthly at the surface and sub-soil profiles during April through October, 2007. The total numbers of bacteria and fungi, soil moisture content, soil physio-chemical properties were measured on greens and fairways of the both golf courses with different GAC treatment on the green and fairway soil profiles. The results showed that GAC had positive effects on the water holding capacity, pH and EC, however, it did not improved the holding capacity of available nutrients ${NO_3}^-,{NH_4}^+$, and phosphorus by its sorption phenomenon. In microbial count test, the total numbers of bacteria and fungi showed a great variation during sampling dates. That may directly relate to the agrochemical application, however, the ratio of total bacterial number versus total fungus number showed a constant value on a sub-soil of 15~30cm depth. Thus, the construction method of GAC in soil profile, and application of fertilizer and pesticide, both impacted on the changes of microbial population. It's means that the construction method of soil profile and turf management using agro-materials might greatly affect on the turfgrass culture and the environment of golf course.

Removal Characteristic of Ammonia Nitrogen and Behavior of Nitrogen in Synthetic Wastewater Using Leclercia Adecarboxylata (Leclercia Adecarboxylata를 이용한 합성폐수의 암모니아성질소 제거특성 및 질소거동)

  • Lee, Hyun-Hee;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.460-465
    • /
    • 2007
  • In this study, the removal characteristic of ammonia nitrogen and behavior of nitrogen was investigated using Leclercia adecarboxylata, which was derived from the culture contaminated by ammonia nitrogen of high concentration. The method of ammonia nitrogen removal was not biological nitrification and denitrification but elimination of nutrient salt with internal synthesis of microorganisms which use ammonia nitrogen as substrate. L. adecarboxylata(one of ammonia synthesis microorganisms) was highly activated and showed the most high removal efficiency in free salt condition but the removal efficiency decreased badly in salt concentration of more than 4%. About 80 mg/L of $NH_3-N$ was mostly removed within 20 hours and 500 mg/L of $NH_3-N$ showed less then removal efficiency of 50% because carbon source was not enough. However, ammonium nitrogen concentration was decreased again when the carbon source was inserted additionally thus, ammonium nitrogen removal efficiency by L. adecarboxylata, was related to amount of carbon source. pH decreased from 8.0 to 6.36 according to growth of L. adecarboxylata. Concentration of nitrite nitrogen and nitrate nitrogen did not increase and TKN concentration showed no variation while ammonia nitrogen was removed by L. adecarboxylata. In addition to, when content of protein in organic nitrogen was measured, protein was not detected at the beginning of microorganism synthesis but protein of 193.1 mg/L was detected after 48 hours. Hence, ammonium nitrogen was not decomposed as nitrate nitrogen and nitrite nitrogen but synthesized by L. adecarboxylata, which has excellent ability of nitrogen synthesis and can threat ammonia nitrogen of high concentration in wastewater.

Development of an Alcoholic Drink Using Onion Extract. (양파즙을 사용한 알코올 음료의 개발)

  • Kim, Sam-Woong;Oh, Eun-Hye;Jun, Hong-Ki
    • Journal of Life Science
    • /
    • v.18 no.7
    • /
    • pp.980-985
    • /
    • 2008
  • This study was carried out to develope an alcoholic drink by fermentation of onion extract using Saccharomyces cerevisiae. The optimal conditions for ethanol production were obtained by standing culture at $25^{\circ}C$ for 5 days with 5% inoculum volume. At the results by flask culture, the growth curve of used S. cerevisiae reached to the stantionary phase at 48 hr and the death phase at 90 hr, whereas ethanol production reached maximum at 114 hr. Under the above conditions, a large scale production was carried out. A standing culture in 5 l fermenter showed the similar results to its flask culture, but progressed 24 hr rapidly more than that of the flask culture. A fed-batch culture was performed by addition of the onionic medium supplemented with 10% (v/v) sucrose after 72 hr from the fermenting start. The fed-batch culture could prevent S. cerevisiae from entering into the death phase and maintain constant level of alcohol production. A continuous culture was able to carry out by adding per every 24 hr the onionic medium supplemented with 10% (v/v) sucrose after 72 hr from the fermenting start. Although S. cerevisiae used showed a little decreased growth, alcohol production maintained roughly the constant level at the maximum yield. To enhance the quality of this alcoholic drink, $2-O-{\alpha}-D-glucopyranosyl$ L-ascorbic acid (AA-2G) was supplemented into the onion extract of the substrate for fermentation. As resulted at this study, this alcoholic drink containing AA-2G should be used as a functional fermented alcohol drink strengthened with vitamin C.

A Study on Nitrification of Raw Waters Containing Linear Alkyl Sulfate in Biological Activated Carbon (생물활성탄을 이용한 Linear Alkyl Sulfate함유 원수에서의 질산화에 관한 연구)

  • Park, Seong Sun;Chang, Ji Soo;Yu, Myong Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.3
    • /
    • pp.116-126
    • /
    • 1995
  • The purpose of this study was to investigate the removal of ammonium nitrogen by biological nitrification in raw water containing LAS using BAC. At batch teats, LAS removal by ozone followed the first order reaction, and the rate constants(k) by ozone dose 1, 3mg/min.L were $0.040min^{-1}$, $0.062min^{-1}$ respectively. Therefore, the more ozone was dosed, the higher LAS was removed The reaction between ozone and ammonium nitrogen also followed the first order, and rate constants(k) at pH7,8 and 9 were $8.9{\times}10^{-4}min-1$, $3.8{\times}10^{-3}min^{-1}$, and $2.9{\times}10^{-2}min^{-1}$ respectively at ozone dose of 3mg/min.L . Therefore, ammonium nitrogen was little removed by ozone under neutral pH of 7. The continuous flow apparatus had four sets composed of a ozone contacter and a GAC column. Through continuous filtration test for 50days, the following conclusions were derived; (1) LAS was removed 23%, 30% respectively by ozone dose 1, 3mg/L, and was not detected in all column effluents during the period of experiment. Therefore, it appeared that adsorption capacities of each column still remained. (2) Ammonium nitrogen concentration after ozone contact varied little in raw Water because pH of raw water was from 6 to 7, and was transfered to nitrite and nitrate within GAC columns as the result of staged nitrification. After 30days, nitrite was not detected in all column effluents due to biological equilbrium between nitro semonas and nitrobacter Average removals of ammonium nitrogen in each column after the lapse of 30days were the following; ${\cdot}$ column A (ozone dose 3mg/L, EBCT 9.5min): about 100% ${\cdot}$ column B (ozone dose 1mg/L, EBCT 9.5min): 91% ${\cdot}$ column C (ozone dose 3mg/L, EBCT 14.2min): about 100% ${\cdot}$ column D (ozone dose 0mg/L, EBCT 9.5min): 53% Though column A and C reached nitrification of about 100%, column C (longer EBCT than column A) was more stable than column A. (3) After backwash, nitrification reached steady state within 5 to 8 hours. Therefore, nitrification was not greatly affected by backwash. (4) According to the nitrification capacity in depth of column A, C, where 100% nitrification occured. LAS was removed within 20cm, while ammonium nitrogen required more depth to be removed by nitrification.

  • PDF

Removal characteristics of NOM in advanced water treatment using ceramic MF membrane (세라믹막(MF) 고도정수처리에서 NOM 제거 특성)

  • You, Sang-Jun;Park, Sung-Han;Lim, Jae-Lim;Suh, Jeong-Min;Jang, Seong-Ho;Hong, Sung-Chul;Yi, Pyong-In
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.367-376
    • /
    • 2014
  • This study assessed the removal efficiency of NOM which is known as the precursors of DBPs in advanced water treatment using the ceramic membrane filtration, introduced the first in the nation at the Y water treatment plant (WTP). It is generally well-known that the removal of NOM by MF Membrane is very low in water treatment process. But, the result of investigation on removal efficiency of NOM in advanced water treatment using the ceramic membrane was different as follows. The removal rate of organic contaminant by the ceramic membrane advanced water treatment was determined to be 65.5% for the DOC, 85.8% for UV254, and 77 to 86% for DBPFP. The removal rate of pre-ozonation was found to be 6 to 15% more effective compared with the pre-chlorination. The removal rate of DOC and $UV_{254}$ in biological activated carbon(BAC) process was over 50% and 75%, respectively although the rate was decreased 10 ~ 20% according to analysis items in converting from GAC to BAC.

Effect of Distribution System Materials and Water Quality on Heterotrophic Plate Counts and Biofilm Proliferation

  • CHANG , YOUNG-CHEOL;JUNG, KWEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1114-1119
    • /
    • 2004
  • The biofilms on pipe walls in water distribution systems are of interest since they can lead to chlorine demand, coliform growth, pipe corrosion, and water taste and odor problems. As such, the study described in this paper is part of an AWWARF and Tampa Bay Water tailored collaboration project to determine the effect of blending different source waters on the water quality in various distribution systems. The project was based on 18 independent pilot distribution systems (PDS), each being fed by a different water blend (7 finished waters blended in different proportions). The source waters compared were groundwater, surface water, and brackish water, which were treated in a variety of pilot distribution systems, including reverse osmosis (RO) (desalination), both membrane and chemical softening, and ozonation-biological activated carbon (BAC), resulting in a total of 7 different finished waters. The observations from this study consistently demonstrated that unlined ductile iron was more heavily colonized by a biomass than galvanized steel, lined ductile iron, and PVC (in that order) and that the fixed biomass accumulation was more influenced by the nature of the supporting material than by the water quality (including the secondary residual levels). However, although the bulk liquid water cultivable bacterial counts (i.e. heterotrophic plate counts or HPCs) did not increase with a greater biofilm accumulation, the results also suggested that high HPCs corresponded to a low disinfectant residual more than a high biofilm inventory. Furthermore, temperature was found to affect the biofilms, plus the AOC was important when the residual was between 0.6 and 2.0 mg $Cl_2/l$. An additional aspect of the current study was that the potential of the exoproteolytic activity (PEPA) technique was used along with a traditional so-called destructive technique in which the biofilm was scrapped off the coupon surface, resuspended, and cultivated on an R2A agar. Both techniques indicated similar trends and relative comparisons among the PDSs, yet the culturable biofilm values for the traditional method were several orders of magnitude lower than the PEPA values.

The Removal Characteristics of THM Formation Potential According to the Changes of Bromide Concentration of Influent Water in BAC Process (생물활성탄 공정에서 계절별 유입수의 $Br^-$ 농도변화에 따른 THM 생성능 구성종별 제거 특성)

  • Son, Hee-Jong;Yoo, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.378-381
    • /
    • 2009
  • The purpose of this research is the evaluation of removal efficiency of THMFP in BAC. The changes of four types of THMFP and total THMFP were examined in the influent and effluent of BAC filter from March to December in 2008. It turned out that the amounts of brominated THMFP were obviously higher in winter and autumn compared to the spring and summer, which also resulted in an increase of the total-THMFP levels during winter and autumn. In addition, long-term running of BAC filter shows the good removal function of chloroform formation potential, but not brominated THMFP; with further bromination, this function was declined, as it shows the formation of bromoform in BAC filter during October and December. These results were caused by changing of the proportion of $Br^-$/DOC.