• Title/Summary/Keyword: biogas recovery

Search Result 60, Processing Time 0.028 seconds

Study on Pertinence for Environmental Energy Complex Town Construction (환경에너지 종합타운 조성 타당성에 관한 연구)

  • Kim, Young-Jun;Lee, Jong-Yeon;Kang, Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.164-171
    • /
    • 2011
  • The objectives of this study are to propose a suitable treatment facility for waste energy recovery after analyzing the waste generation and disposal situation in Jejudo, to establish the plan to install the solar photovoltaics and wind power plant considering the site conditions and finally to establish the environmental energy town plan in conjunction with the existing facilities. The food waste biogas plant is selected as the treatment capacity of 200 ton/day. It is estimated that the biogas plant will produce the electricity of 7,594 MWh per year, which will reduce the greenhouse gas of 4,177 $tCO_2$ per year. The solar photovoltaics and wind power plant will produce the electricity of 13,410 MWh per year, which will reduce the greenhouse gas of 7,375 $tCO_2$ per year. Environmental energy town will give us the reduction of operating cost by centralized treatment of residues and byproducts, and by efficient utilization of produced energy.

Highly Efficient Biogas Upgrading Process Using Polysulfone Hollow Fiber Membrane at Low Temperature (폴리술폰 중공사막을 이용한 바이오가스 고순도화 고효율 저온 분리 공정)

  • Kim, Se Jong;Han, Sang Hoon;Yim, Jin Hyuk;Lee, Chung Seop;Chang, Won Seok;Kim, Gill Jung;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.140-149
    • /
    • 2022
  • In this study, the conditions of low temperature and high pressure of biogas upgrading process using polysulfone membrane have been designed and tested to achieve the high recovery and efficiency corresponding to those of the highly selective polymeric materials. Polysulfone hollow fiber membrane with 4-component dope solution was spun via non-solvent induced phase separation. The hollow fiber membrane was mounted into a 1.5 inch housing. The effective area was 1.6 m2, and its performance was examined in various operation temperatures and pressures. CO2 and CH4 permeances were 412 and 12.7 GPU at 20℃, and 280 and 3.6 GPU at -20℃, respectively, while the CO2/CH4 selectivity increased from 32.4 to 77.8. Single gas test was followed by the mixed gas experiments using single-stage and double stage where the membrane area ratio varied from 1:1 to 1:3. At the single-stage, CH4 purity increased and the recovery decreased as the stage-cut increased. At the double stage, the area ratio of 1:3 showed the higher CH4 recovery as decreasing the operation temperature at the same purity of CH4 97%. Finally, polysulfone hollow fiber membranes have yielded of both CH4 purity and recovery of 97% at -20℃ and 16 barg.

Economic Feasibility Analysis of Building Seonam Biogas Combined Heat and Power Plant (서남 바이오가스 열병합발전 시설 건립의 경제적 타당성 분석)

  • Park, So-Yeon;Shin, Hyun-Ho;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.141-151
    • /
    • 2016
  • Recently, technology for energy recovery from waste has been increasing interest globally including the Korea. In Korea, we have interested in using biogas generated from the sewage treatment process. As one alternative, there are operating biogas combined heat and power plant. The generation amount of the Sewage Sludge are expected to grow in the future. For this reason, total processing cost of Sewage Sludge will increase. To solve this problem, it seems will be invested with the expansion of facilities that use biogas as energy. Therefore, quantitative information on such facilities is required. Thus, this study attempts to economic feasibility analysis for Seonam Biogas Combined Heat and Power Plant. Meanwhile, as the benefit items for economic feasibility analysis consider electricity supply benefit except for heat supply benefit. The average prices of electricity use were residence 123.69, commercial 130.46, and industry 102.59 won per kWh for the year 2015, In addition, the economic benefit are calculated to be residence 310.21, commercial 378.49, and industry 222.87 won per kWh. The results of economic feasibility analysis is NPV 72.18 billion won, B/C 1.90, IRR 37%, shows that economic validity of Seonam Biogas Combined Heat and Power Plant.

A Fundamental Study on Biogas from Municipal Solid Waste (도시(都市) 폐기물(廢棄物)로부터 Biogas 생산(生産)에 관한 기초적(基礎的) 연구(研究))

  • Choi, Eui So;Lee, Jung Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.31-40
    • /
    • 1987
  • To evaluate the fundamental factors in the recovery of biogas from the landfills composed of about 40% of volatile solids, the experiments for the samples from the operating landfill site as well as from the laboratory-scale lysimeter were undertaken. In the test of landfills, the change of moisture content, the content of volatile solids (VS), the ratio of saccharide to ligin(Y) and the estimation of landfills reclaimed and the correlationship between VS and Y were investigated. During the experiments with laboratory-lysimeter, temperature, pH, gas production rate, the composition of gas were measured. The mathematical model derived from the the rate coefficient of gas production(k) were proposed from the results of this investigation. Furthermore, the proposed mathematical model from this study was verified with the obtained values from experiments.

  • PDF

Thermophilic Anaerobic Biodegradability of Agro-industrial Biomass (농축산바이오매스 고온 혐기성 생분해도 평가)

  • Heo, Namhyo;Kang, Ho;Lee, Seungheon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.101-101
    • /
    • 2010
  • Anaerobic digestion(AD) is the most promising method for treating and recycling of different organic wastes, such as organic fraction of municipal solid waste, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to produce renewable energy and to reduce $CO_2$ and other green-house gas(GHG) emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. Currently some 80% of the world's overall energy supply of about 400 EJ per year in derived from fossil fuels. Nevertheless roughly 10~15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. The representative biofuels produced from the biomass are bioethanol, biodiesel and biogas, and currently biogas plays a smaller than other biofuels but steadily growing role. Traditionally anaerobic digestion applied for different biowaste e.g. sewage sludge, manure, other organic wastes treatment and stabilization, biogas has become a well established energy resource. However, the biowaste are fairly limited in respect to the production and utilization as renewable source, but the plant biomass, the so called "energy crops" are used for more biogas production in EU countries and the investigation on the biomethane potential of different crops and plant materials have been carried out. In Korea, with steadily increasing oil prices and improved environmental regulations, since 2005 anaerobic digestion was again stimulated, especially on the biogasification of different biowastes and agro-industrial biomass including "energy crops". This study have been carried out to investigate anaerobic biodegradability by the biochemical methane potential(BMP) test of animal manures, different forage crops i.e. "energy crops", plant and industrial organic wastes in the condition of thermophilic temperature, The biodegradability of animal manure were 63.2% and 58.2% with $315m^3CH_4/tonVS$ of cattle slurry and $370m^3CH_4/tonVS$ of pig slurry in ultimate methane yields. Those of winter forage crops were the range 75% to 87% with ultimate methane yield of $378m^3CH_4/tonVS$ to $450m^3CH_4/tonVS$ and those of summer forage crops were the range 81% to 85% with ultimate methane yield of $392m^3CH_4/tonVS$ to $415m^3CH_4/tonVS$. The forge crops as "energy crops" could be used as good renewable energy source to increase methane production and to improve biodegradability in co-digestion with animal manure or only energy crop digestion.

  • PDF

Separation and Purification of Bio Gas by Hollow Fiber Gas Separation Membrane Module (중공사형 기체분리막 모듈을 이용한 바이오가스의 분리 및 정제)

  • Koh, Hyung-Chul;Ha, Seong-Yong;Woo, Seung-Moon;Nam, Sang-Yong;Lee, Byung-Seong;Lee, Chung-Seop;Choi, Whee-Moon
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.177-192
    • /
    • 2011
  • Hollow fiber membrane using CTA polymers were prepared by the phase separation method for the separation and purification of biogas and the hollow fiber gas separation membrane modules with the effective surface area of 0.17 $m^2$ were prepared. The pure gas permeation properties of membrane modules for methane, oxygen and carbon dioxide were measured. The permeance of $CO_2$ and $CH_4$were 0.46 GPU and 18.52 GPU, respectively, therefore, the high $CO_2$/$CH_4$ selectivity of 40.4 was obtained. The separation and purification test for 4 different simulated mixed gases were carried out after the pure gas test and the gas concentration and flux of the permeate at the various stage-cut were measured from the 1 stage, 2 stage, and 3 stage cascade of membrane modules. In the 1 stage test, the concentration of $CH_4$ increased as the increase of the stage-cut, while the $CH_4$ recovery efficiency ratio decreased. In the 2 stage test, the $CH_4$ recovery efficiency ratio increased compared to the 1 stage. The 3 stage test was employed to reduce the loss of $CH_4$ in biogas and the result showed less than 5% of $CH_4$ recovery loss.

Relationship assessment of the residual antibiotics and the amount of N component by different production stages of liquid fertilizer from livestock manure (가축분뇨 유래 액비 생산단계별 항생제 잔류 농도와 질소 성분 함량과의 상관성 평가)

  • Song-Hee Ryu;Jin-Wook Kim;Young-Kyu Hong;Sung-Chul Kim;Jun-Hyeong Lee;Eun-A Jeong;Chang-Gyu Kim;Young-Man Yoon;Oh-Kyung Kwon
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.258-265
    • /
    • 2023
  • After application of veterinary antibiotics, they may be partially metabolized before they are excreted by feces or urine either as unaltered form or as metabolites. Residual antibiotics enter the adjacent agricultural environments by spraying manure-based compost and liquid fertilizer on farmlands and lead to secondary pollution. The objective of this study was to compare the residual concentrations of 6 veterinary antibiotics by different production stages of liquid fertilizer from livestock manure recycling facilities. The relationship between concentration change of the residual antibiotics and the amount of liquid fertilizer component was also assessed. Pre-treatment showed the recovery of 63.4-106.7% at ppb level and the limit of quantification of 0.009-0.037 ㎍/L.As the result of analyzing the relationship between the residual concentrations of antibiotics and the amount of N component in liquid fertilizer by different production stages, the residual concentrations of antibiotics and N tended to decrease as the stabilization period elapsed during the liquid fertilization process. Average concentrations of sulfamethazine in raw materials, middle and final products of liquid fertilizer were 40.85, 26.17, 3.54 ㎍/L, respectively. Those of chlortetracycline decreased from 2.32 to 1.25 ㎍/L. The other 4 antibiotics also showed a decreasing trend by different production stages of liquid fertilizer. The amount of liquid fertilizer component N decreased from 0.21 to 0.096% by production stages of liquid fertilizer. It is considered that the correlation between residual antibiotic concentrations and N content can be applied as basic data for setting antibiotic reduction indicators.

Optimization of Bio-Methane Gas Enrichment Process for City Gas Supply (도시가스용 바이오가스 메탄농축공정 최적화)

  • Ko, Sang-Wook;Lee, Kyung Jin;Moon, Myong Hwan;Baek, Ju Hong;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.76-83
    • /
    • 2017
  • Biogas, combine with ever-increasing natural gas demand, has been on the center stage in South Korea for the early part of twenty first century in an effort to reduce the emission of global warming gases. With the passage of legal system of City Gas Business Law in 2014, the biogas has its place of production and distribution to consumers. However, it has a room for its technological improvements in terms of enrichment, by separating carbon dioxide and removing impurities efficiently. For these improvements, four different methane enrichment processes were tested in this study; membrane separation, water absorption, Chemical Absorption and Adsorption. A variety of operation scenarios were applied to the processes and the best practices were drawn out. The optimum process was selected based on case study results. Methane produced in this study showed 97% purity and 98% recovery rate, which meets the requirements of the City Gas quality standards.

A Study on the Evaluation of Two-Phase Anaerobic Process for Public Livestock Wastewater Treatment Plant (이상혐기공정의 축산폐수 공공처리시설 적용 가능성에 관한 실험적 연구)

  • Oh, Sung Mo;Kim, Moon Ho;Bae, Yoon Sun;Park, Chul Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.331-339
    • /
    • 2007
  • The purpose of this study was to investigate the biodegradability and performance of organic removal and methane production rate when treating piggery wastewater using a pilot scale two-phase anaerobic system operated up to a volumetric rate of $10m^3/day$. The pilot scale two-phase anaerobic process is consisted of a continuous-flow stirred-tank reactor (CFSTR) for the acidification phase and an Upflow Anaerobic Sludge Blanket reactor (UASB) for the methanogenesis. The acidogenic reactor played key roles in reducing the periodically applied shock-loading and in the acidification of the influent organics. The acidogenic CFSTR was operated at organic loading rates (OLR) between 1.8 and $14.4kgCOD/m^3{\cdot}day$, and the UASB reactor was operated between 0.5 and $5.6kgCOD/m^3{\cdot}day$. A stable maximum biogas production rate was $81m^3/day$ and the methane conversion rate of the organic matter varied from 0.30 to $0.42L\;CH_4/g\;COD_{removed}$(0.40) at hydraulic retention time (HRT) above 3.5days. The methane contents ranged from 73 to 82% during the experimental period. It is known that most of the removed organic matter was converted to methane gas, and the produced biogas might be high quality for its subsequent use.

Pilot Scale Anaerobic Digestion of Korean Food Waste (파일로트 규모 음식쓰레기 2상 혐기소화 처리공정에 관한 연구)

  • Lee, J.P.;Lee, J.S.;Park, S.C.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.197-203
    • /
    • 1998
  • A 5 ton/day pilot scale two-phase anaerobic digester was constructed and tasted to treat Korean food wastes in Anyang city. The process was developed based on 3 years of lab-scale experimental results on am optimim treatment method for the recovery of biogas and humus. Problems related to food waste are ever Increasing quantity among municipal solid wastes(MSW) and high moisture and salt contents. Thus our food waste produces large amounts of leachate and bed odor in landfill sites which are being exhausted. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert material such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 days space time at pH of about 6.5. The second, methanization reactor part of which is filled with anaerobic fillters, converted the acids into methane with pH between 7.4 to 7.8. The space time for the second reactor was 15 days. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady state operation with the maximum organic rate of 7.9 $kgVS/m^3day$ and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about $230m^3$ of biogas with 70% of methane and 80kg humus. This process is extended to full scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.

  • PDF