DOI QR코드

DOI QR Code

Relationship assessment of the residual antibiotics and the amount of N component by different production stages of liquid fertilizer from livestock manure

가축분뇨 유래 액비 생산단계별 항생제 잔류 농도와 질소 성분 함량과의 상관성 평가

  • Song-Hee Ryu (Residual Chemical Assessment Division, NAS, RDA) ;
  • Jin-Wook Kim (Department of Bio-Environmental Chemistry, Chungnam National University) ;
  • Young-Kyu Hong (Department of Bio-Environmental Chemistry, Chungnam National University) ;
  • Sung-Chul Kim (Department of Bio-Environmental Chemistry, Chungnam National University) ;
  • Jun-Hyeong Lee (Biogas Research Center, Hankyong National University) ;
  • Eun-A Jeong (Biogas Research Center, Hankyong National University) ;
  • Chang-Gyu Kim (Biogas Research Center, Hankyong National University) ;
  • Young-Man Yoon (Biogas Research Center, Hankyong National University) ;
  • Oh-Kyung Kwon (Biogas Research Center, Hankyong National University)
  • Received : 2023.04.21
  • Accepted : 2023.06.05
  • Published : 2023.12.31

Abstract

After application of veterinary antibiotics, they may be partially metabolized before they are excreted by feces or urine either as unaltered form or as metabolites. Residual antibiotics enter the adjacent agricultural environments by spraying manure-based compost and liquid fertilizer on farmlands and lead to secondary pollution. The objective of this study was to compare the residual concentrations of 6 veterinary antibiotics by different production stages of liquid fertilizer from livestock manure recycling facilities. The relationship between concentration change of the residual antibiotics and the amount of liquid fertilizer component was also assessed. Pre-treatment showed the recovery of 63.4-106.7% at ppb level and the limit of quantification of 0.009-0.037 ㎍/L.As the result of analyzing the relationship between the residual concentrations of antibiotics and the amount of N component in liquid fertilizer by different production stages, the residual concentrations of antibiotics and N tended to decrease as the stabilization period elapsed during the liquid fertilization process. Average concentrations of sulfamethazine in raw materials, middle and final products of liquid fertilizer were 40.85, 26.17, 3.54 ㎍/L, respectively. Those of chlortetracycline decreased from 2.32 to 1.25 ㎍/L. The other 4 antibiotics also showed a decreasing trend by different production stages of liquid fertilizer. The amount of liquid fertilizer component N decreased from 0.21 to 0.096% by production stages of liquid fertilizer. It is considered that the correlation between residual antibiotic concentrations and N content can be applied as basic data for setting antibiotic reduction indicators.

축산용 항생제는 투여된 양의 일부만이 체내에서 사용되며 나머지는 모화합물 형태나 대사체로서 분뇨를 통하여 배출된다. 이러한 분뇨는 자원화 시설로부터 퇴액비로 생산되어 농경지에 살포됨으로써 농업환경에 유입되어 2차 오염 등을 초래하고 있다. 본 연구는 국내 가축분뇨 자원화 시설의 액비 생산단계별로 6종 축산용 항생제의 잔류 농도를 비교하고 액비 성분 질소 함량과의 상관성을 평가하기 위해 수행되었다. Buffer 및 SPE를 사용한 전처리 방법은 ppb 수준에서 63.4-106.7%의 회수율을 나타냈으며, 정량한계의 범위는 0.009-0.037 ㎍/L이었다. 공동자원화 시설 생산 액비의 생산단계별 잔류 항생제 농도와 규격함량 N 성분 함량과의 상관성 평가를 분석한 결과 액비화 과정 중 부숙 기간이 경과함에 따라 N 성분 및 항생제 잔류 농도가 감소하는 경향을 보여 주었다. 액비 원료, 중기 및 제품 중 SMZ의 평균 잔류 항생제는 40.85, 26.17, 3.54 ㎍/L이었으며 CTC의 경우 2.32에서 1.25 ㎍/L 수준으로 감소하였다. 다른 4종 항생제 역시 생산단계별로 잔류 농도가 감소하는 경향을 보여주었으며 액비 규격성분 N은 생산단계별 함량이 0.21에서 0.096%로 감소하였다. 액비 생산단계별 잔류 항생제 농도와 규격 성분 N 함량과의 상관성 평가는 항생제 저감화 지표 설정의 기초자료로 활용 가능할 것으로 판단된다.

Keywords

Acknowledgement

이 연구는 농촌진흥청 국립농업과학원의 가축분뇨 유래 퇴·액비 중 항생제 잔류특성 및 경감기술 개발(PJ01488504)의 연구비 지원에 의해 이루어졌습니다.

References

  1. Pikkemaat MG, Yassin H, Fels-Klerx HJ, Berendsen BJA (2016) Antibiotic Residues and Resistance in the Environment. RIKILT Wageningen UR (University & Research) RIKILT report (No. 2016.009). Wageningen, Netherland 
  2. Chen J, Xu H, Sun Y, Huang L, Zhang P, Zou C, Bo Y, Zhu YG, Zhao C (2016) Interspecific differences in growth response and tolerance to the antibiotic sulfadiazine in ten clonal wetland plants in South China. Sci Total Environ 543: 197-205. doi: 10.1016/j.scitotenv.2015.11.015 
  3. Wang S, Wang H (2015) Adsorption behavior of antibiotic in soil environment: a critical review. Front Environ Sci Eng 9: 565-574. doi: 10.1007/s11783-015-0801-2 
  4. Sarmah AK, Meyer MT, Boxall A (2006) A gloval perspective on the use, sales, exposure pathway, occurrence, fate anf effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65: 725-759. doi: 10.1016/j.chemosphere.2006.03.026 
  5. MAFRA (2020) Press release: Consumption of veterinary antibiotics in Korea. Ministry of Agriculture, Food and Rural Affairs, Korea 
  6. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, and Laxminarayan (2015) Global trends in antimicrobial use in food animals. Proc Nati Acad Sci USA 112(18): 5649-5654. doi: 10.1073/pnas.1503141112 
  7. Martinez-Carballo E, Conzalez-Barreiro C, Scharf Sigrid, Gans Oliver (2007) Envrionmental monitoring sutdy of selected veterinary antibiotics in animal manure and solids in Austria. Envrionmental Pollution 148(2): 570-579. doi: 10.1016/j.envpol.2006.11.035 
  8. Halling-Sorensen B, Sengelov G, Tjornelund J (2002) Toxicity of tetracyclines and tetracycline degradation products to environmently relevant bacteria, including selected tetracycline-resistant bacteria. Arch. Environ Contam Toxicol 42: 263-271. doi: 10.1007/s00244-001-0017-2 
  9. Alock RE, Aweetman A, Jones KC (1999) Assessment of organic contaminant fate in wastewater treatment plants I. Selected compounds and physiochemical properties. Chemosphere 38: 2247-2262. doi: 10.1016/S0045-6535(98)00444-5 
  10. Arikan OA, Mulbry W, Rice C (2009) Management of antibiotic residues from agricultural sources: use of composting to reduce chlortetracycline residues in beef manure from treated animals. Journal of Hazardous Materials 164: 483-489. doi: 10.1016/j.jhazmat.2008.08.019 
  11. Arikan OA, Sikora LJ, Mulbry W, Khan SU, Foster FD (2007) Composting rapidly reduces levels of extractable oxytetracycline in manure from therapeutically treated beef valves, Bioesour Technol 98: 169-176. doi: 10.1016/j.biortech.2005.10.041 
  12. Laine MM, Jorgensen KS (1997) Effective and safe composting of chlorophenol contaminated soil in pilot scale. Environ Sci Technol 31: 371-378. doi: 10.1021/es960176u 
  13. Hartlieb N, Ertunc T, Schaeffer A, Klein W (2003) Mineralization, metabolism and formation of non-extractable residues of 14C-labelled organic contaminats during pilot-scale composting of municipal biowaste. Envuron Pollut 126: 83-91. doi: 10.1016/S0269-7491(03)00143-X 
  14. Lim JE, Kim HW, Jeong SH, Lee SS, Yang JE, Kim KH, Ok YS (2014) Characterization of burecucumber biochar and its potential as an adsorbent for veterinary antibiotics in water. J Appl Biol Chem 57(1): 65-72. doi: 10.3839/jabc.2014.011 
  15. Ye ZL, Deng YJ, Lou YY, Ye X, Zhang JQ, Chen SH (2017) Adsorption behavior of tetraclines by struvite particles in the process of phosphorus recovery feom synthetic swine wastewater. Chemical Engineering Journal 313: 1633-1638. doi: 10.1016/j.cej.2016.11.062 
  16. Yu H, Ding W, Luo J, Geng R, Cai Z (2012) Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil and Tillage Research 124: 170-177. doi: 10.1016/j.still.2012.06.011 
  17. Liu E, Yan C, Mei X, He W, Bing SH, Ding L, Liu Q, Liu S, Fan T (2010) Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 158(3-4): 173-180. doi: 10.1016/j.geoderma.2010.04.029 
  18. Chen JH (2006) The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use (Vol. 16, p. 20). Land Development Department Bangkok, Thailand 
  19. Chardon WJ, Oenema O, Del Castilho P, Vriesema R, Japenga J, Blaauw D (1997) Organic phosphorus in solutions and leachates from oils treated with animal slurries. Journal of Environment Quality 26(2): 372-378. doi: 10.2134/jeq1997.00472425002600020006x 
  20. Winckler C, Engels H, Hund-Rinke K, Luckow T, Simon M, Steffens G (2003) Verhalten von Tetacycline und anderen Veterinarantibiotika in Wirtschaftsdunger und Boden. UFOPLAN 200 73 248, Berlin 
  21. Yoon YM, Halder JN, Kang TW, Kim SR, Yabe M, Lee MG (2018) Derivation of Monitoring Factors to Produce Liquid Manure Fertilizers from the Aerobic Liquid Fertilization Process of Pig Slurries. J Fac Agr Kyushu Univ 63(1): 149-157. doi: 10.5109/1911227