• Title/Summary/Keyword: biofuels

Search Result 130, Processing Time 0.02 seconds

Study on Potential Feedstock Amount Analysis of Biodiesel in Korea (한국의 바이오디젤 원료 잠재량 분석 연구)

  • MIN, KYONG-IL;PARK, CHEON-KYU;KIM, JAE-KON;Na, BYUNG-KI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.447-461
    • /
    • 2016
  • Recently, the Renewable Fuel Standard(RFS) has been commenced from July 31, 2015 in the New and Renewable Energy Act for expanding the supply of renewable energy and reduction of national GHG target in Korea. The biodiesel is only a means of implementation for the RFS, therefore the biodiesel supply expansion is important for fulfilling the RFS obligation policy. The major key points of the biodiesl supply are expanding domestic feedstocks due to the over 60% dependence on foreign feedstock and reducing the price of feedstock because of the over 70% occupation of feed stock price in the biodiesl production cost. Therefore, we estimated actual amount of potential feedstocks which are possible to use for biodiesl production in Korea and investigated technical and political improvements for expanding biodiesl. For estimating a potential feedstocks, first selected the potential biodiesl feedstocks by investigating the status of global biodiesl feedstocks and then analyzed the possible potential amount of each feedstock by surveying the generation situations, the distribution structures and the technical level.

Properties of Cellulase Immobilized on Chitosan Beads (키토산 비드에 고정화된 셀룰라아제의 특성)

  • Lee, Sang Heon;Ha, Yongil;Kim, Bo Young;Kim, Beom Soo
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.239-243
    • /
    • 2014
  • Recently, there is a growing interest in efficient biomass pretreatment and saccharification processes to produce biofuels and biochemicals from renewable non-food biomass resources. In this study, glucose was produced from cellulose by immobilizing cellulase enzyme on chitosan beads which was reported to have high pH and temperature stability. The immobilized amounts of cellulase on chitosan beads linearly increased with increasing the concentrations of cellulase solution. The glucose production increased to 7.2 g/L from 1% carboxymethyl cellulose (CMC) substrate when immobilized at 20% cellulase solution. The maximum specific activity was 0.37 unit/mg protein when immobilized at 8% cellulase solution. At pH 7 and $37^{\circ}C$, the optimum reaction composition was 0.5 g beads/L from 1% CMC substrate. At this condition, the conversion to glucose completed at ca. 20 min.

A Study on Possibility of Bio-coal Manufacturing using High Moisture Agricultural by- Products (고함수율 농업부산물을 이용한 Bio-coal의 가능성에 대한 연구)

  • Kim, Min-Jung;Park, Kyoung-Joo;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.1-6
    • /
    • 2015
  • The rapid industrial development is facing problem due to energy depletion in Korea. So that, it can be necessary to develop alternative energy sources. Alternative energy like biofuels can be produced by using waste fuel, which is ecofriendly. As we know, the organic waste was banned to dump in landfill and ocean dumping. The most practicable method usually used to reduce organic waste is getting feedstuff or composting, considering the discharge characteristics of agricultural by-products waste treatment were selected. In this study, bio-coal was made using agriculture by product. Biocoal was prepared by adding 50 g of uniformly mixture into reactor and was carbonized at low temperatures 210, 220, and 230℃. The time of reaction was 1, 2 and 3 hours. Bio-coal approximately was similar to the standard of solid fuels. Other characteristics of fuel were also studied. The experiments which were analyzed were moisture content and calorific value, ash, chlorine, sulfur and heavy metals analysis as mercury, cadmium, lead, arsenic, and chromium. As a result, bio-coal 220℃, 2 hours was the optimal conditions while heating.

Biofuel Industry and Recent Research in USA (미국의 바이오연료와 연구 동향)

  • Lee, Joung-Kyong;Bransby, David
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.2
    • /
    • pp.129-138
    • /
    • 2008
  • Demand for alternatives to petroleum is increasing the production of biofuels from food crops such as corn, soybeans, sorghum and sugarcane, etc. At least for the next 5 years, ethanol demand will be increased greatly in the United States and in the world. Presently, most ethanol produced in the United States is corn (Zea mays) ethanol. As a result, especially in the Americas and Southeast Asia, agricultural land is diverted to biofuel production. Even though biofuel industry has many advantage including national security, economical, energetical and sustainable impacts, it is driving grain prices up and creating considerable concern about the potential negative impacts on a wide range of food products that depend on gain : chicken, pork, beef, and dairy products such as milk, cheese, yoghurt, cream and ice cream. Feedstock crops are crops such as switchgrass(Panicum virgatum, L.), corn stover and grasses that can be used in industrial processes such as fermentation into alcohol fuels. Feedstock is no compete with food. Furthermore it is friendly environmental bioenergy crops. In Korea, with increasing demand for fossil fuels the exploration of alternative sources of liquid fuel is inevitable. I suggest Korea need to research and to develop actively on feedstock for biofuel production through this review.

Separation of Xanthorhodopsin from Salinibacter ruber and Its in vitro Reconstruction (Salinibacter ruber로부터 잔토로돕신의 분리와 in vitro에서 재구축)

  • Kong, Min-Kyung;Yim, Joung-Han;Lee, Pyung-Cheon
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.280-282
    • /
    • 2011
  • Capture and conversion of abundant solar energy using biotechnology will be essential for the development of sustainable and future energy. Photosynthesis is used for the production of biofuels such as biohydrogen. In this study, lightharvesting xanthorhodopsin consisting of retinal and salinixanthin was isolated from a photosynthetic microorganism Salinibacter ruber by aqueous two phase extraction. To stabilize the light-harvesting machine, artificial xanthorhodopsin-liposome system was reconstructed to have photoelectron absorption activity.

Extraction of Lipids from Microalgae Using Polar and Nonpolar Bi-solvent Systems (이성분 용매 추출에 의한 미세조류로 부터의 바이오디젤용 지질 분리)

  • Hong, Yeon-Ki;Kim, Jeong-Bae;Ng, K.Y. Simon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.66-71
    • /
    • 2011
  • Various single solvents were tested to find the effective solvent for the extraction of algae oil from wet-form Chlorella minutissima. In the case of single solvents, their extractabilities for algae oil were increased with their polarity because the water in wet algae cell is to form a solvent shell around the lipids. Based on these results, the wet-form algae samples were treated with a polar alcohol solvent and then a nonpolar solvent was added in algae residue. In the algae oil extraction by ethanol/n-hexane, total lipid contents were 40-50% and composition of triglyceride in extracted oil was 46.50%. Considering solvent toxicity of conventional solvent mixture such as chloroform and methanol for algae oil extraction, the ethanol/n-hexane system was identified as the effective one for the oil extraction from wet-form Chlorella minutissima.

Role of membranes in bioelectrochemical systems

  • Kokabian, Bahareh;Gude, Veera Gnaneswar
    • Membrane and Water Treatment
    • /
    • v.6 no.1
    • /
    • pp.53-75
    • /
    • 2015
  • This paper provides an overview of the role of membranes in bioelectrochemical systems (BESs). Bioelectrochemical systems harvest clean energy from waste organic sources by employing indigenous exoelectrogenic bacteria. This energy is extracted in the form of bioelectricity or valuable biofuels such as ethanol, methane, hydrogen, and hydrogen peroxide. Various types of membranes were applied in these systems, the most common membrane being the cation exchange membrane. In this paper, we discuss three major bioelectrochemical technology research areas namely microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs). The operation principles of these BESs, role of membranes in these systems and various factors that affect their performance and economics are discussed in detail. Among the three technologies, the MFCs may be functional with or without membranes as separators while the MECs and MDCs require membrane separators. The preliminary economic analysis shows that the capital and operational costs for BESs will significantly decrease in the future due mainly to differences in membrane costs. Currently, MECs appear to be cost-competitive and energy-yielding technology followed by MFCs. Future research endeavors should focus on maximizing the process benefits while simultaneously minimizing the membrane costs related to fouling, maintenance and replacement.

Analysis of High-Value Materials through Continuous Cultivation System from Pre-and Post-Milking of Chlorella protothecoides (Chlorella protothecoides의 밀킹 전후 연속 배양 시스템을 통한 유용물질 분석)

  • Jeong, Yu Jeong;Kim, Seong Hak;Lee, Won Young;Kim, Sung Chun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.73-82
    • /
    • 2018
  • Chlorella are source of valuable compounds as lipids, proteins, carbohydrates, bioactive compounds. To continuous obtain the high-value materials of Chlorella protothecoides, we performed continuous cultivation after applying milking techniques to C. protothecoides grown with culture for 7 days in optical panel bioreactor (OPBR) system. Fatty acid and lutein in extracts from pre- and post-milking of C. protothecoides were analyzed using gas chromatography and high performance liquid chromatography, respectively. C. protothecoides were rich in unsaturated fatty acids with a high content of oleic acid(C18:1), which is suitable as a biofuel feedstock. The fatty acid content in pre- and post-milking of C. protothecoides was decreased from 126.424mg/g d.w. to 119.341mg/g d.w, and the lutein content decreased from 0.258mg/g d.w. to 0.178mg/g d.w. The results of this study demonstrate the feasibility of milking C. protothecoides for production of lipids for biofuels production. It was confirmed that microalgae can continuously obtain lutein present in a trace amount through a continuous culture from milking.

Overexpression of Mutant Galactose Permease (ScGal2_N376F) Effective for Utilization of Glucose/Xylose or Glucose/Galactose Mixture by Engineered Kluyveromyces marxianus

  • Kwon, Deok-Ho;Kim, Saet-Byeol;Park, Jae-Bum;Ha, Suk-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1944-1949
    • /
    • 2020
  • Mutant sugar transporter ScGAL2-N376F was overexpressed in Kluyveromyces marxianus for efficient utilization of xylose, which is one of the main components of cellulosic biomass. K. marxianus ScGal2_N376F, the ScGAL2-N376F-overexpressing strain, exhibited 47.04 g/l of xylose consumption and 26.55 g/l of xylitol production, as compared to the parental strain (24.68 g/l and 7.03 g/l, respectively) when xylose was used as the sole carbon source. When a mixture of glucose and xylose was used as the carbon source, xylose consumption and xylitol production rates were improved by 195% and 360%, respectively, by K. marxianus ScGal2_N376F. Moreover, the glucose consumption rate was improved by 27% as compared to that in the parental strain. Overexpression of both wild-type ScGAL2 and mutant ScGAL2-N376F showed 48% and 52% enhanced sugar consumption and ethanol production rates, respectively, when a mixture of glucose and galactose was used as the carbon source, which is the main component of marine biomass. As shown in this study, ScGAL2-N376F overexpression can be applied for the efficient production of biofuels or biochemicals from cellulosic or marine biomass.

Overexpression of S-Adenosylmethionine Synthetase in Recombinant Chlamydomonas for Enhanced Lipid Production

  • Jeong Hyeon Kim;Joon Woo Ahn;Eun-Jeong Park;Jong-il Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.310-318
    • /
    • 2023
  • Microalgae are attracting much attention as promising, eco-friendly producers of bioenergy due to their fast growth, absorption of carbon dioxide from the atmosphere, and production capacity in wastewater and salt water. However, microalgae can only accumulate large quantities of lipid in abiotic stress, which reduces productivity by decreasing cell growth. In this study, the strategy was investigated to increase cell viability and lipid production by overexpressing S-adenosylmethionine (SAM) synthetase (SAMS) in the microalga Chlamydomonas reinhardtii. SAM is a substance that plays an important role in various intracellular biochemical reactions, such as cell proliferation and stress response, and the overexpression of SAMS could allow cells to ithstand the abiotic stress and increase productivity. Compared to wild-type C. reinhardtii, recombinant cells overexpressing SAMS grew 1.56-fold faster and produced 1.51-fold more lipids in a nitrogen-depleted medium. Furthermore, under saline-stress conditions, the survival rate and lipid accumulation were 1.56 and 2.04 times higher in the SAMS-overexpressing strain, respectively. These results suggest that the overexpression of SAMS in recombinant C. reinhardtii has high potential in the industrial-scale production of biofuels and various other high-value-added materials.