• Title/Summary/Keyword: biofuels

Search Result 130, Processing Time 0.02 seconds

Comprehensive Characterization of Mutant Pichia stipitis Co-Fermenting Cellobiose and Xylose through Genomic and Transcriptomic Analyses

  • Dae-Hwan Kim;Hyo-Jin Choi;Yu Rim Lee;Soo-Jung Kim;Sangmin Lee;Won-Heong Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1485-1495
    • /
    • 2022
  • The development of a yeast strain capable of fermenting mixed sugars efficiently is crucial for producing biofuels and value-added materials from cellulosic biomass. Previously, a mutant Pichia stipitis YN14 strain capable of co-fermenting xylose and cellobiose was developed through evolutionary engineering of the wild-type P. stipitis CBS6054 strain, which was incapable of co-fermenting xylose and cellobiose. In this study, through genomic and transcriptomic analyses, we sought to investigate the reasons for the improved sugar metabolic performance of the mutant YN14 strain in comparison with the parental CBS6054 strain. Unfortunately, comparative whole-genome sequencing (WGS) showed no mutation in any of the genes involved in the cellobiose metabolism between the two strains. However, comparative RNA sequencing (RNA-seq) revealed that the YN14 strain had 101.2 times and 5.9 times higher expression levels of HXT2.3 and BGL2 genes involved in cellobiose metabolism, and 6.9 times and 75.9 times lower expression levels of COX17 and SOD2.2 genes involved in respiration, respectively, compared with the CBS6054 strain. This may explain how the YN14 strain enhanced cellobiose metabolic performance and shifted the direction of cellobiose metabolic flux from respiration to fermentation in the presence of cellobiose compared with the CBS6054 strain.

Alkaline Peroxide Pretreatment of Waste Lignocellulosic Sawdust for Total Reducing Sugars

  • Satish Kumar Singh;Sweety Verma;Ishan Gulati;Suman Gahlyan;Ankur Gaur;Sanjeev Maken
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.412-418
    • /
    • 2023
  • The surge in the oil prices, increasing global population, climate change, and waste management problems are the major issues which have led to the development of biofuels from lignocellulosic wastes. Cellulosic or second generation (2G) bioethanol is produced from lignocellulosic biomass via pretreatment, hydrolysis, and fermentation. Pretreatment of lignocellulose is of considerable interest due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. In this study, furniture waste sawdust was subjected to alkaline peroxide (H2O2) for the production of reducing sugars. Sawdust was pretreated at different concentrations from 1-3% H2O2 (v/v) loadings at a pH of 11.5 for a residence time of 15-240 min at 50, 75 and 90 ℃. Optimum pretreatment conditions, such as time of reaction, operating temperature, and concentration of H2O2, were varied and evaluated on the basis of the amount of total reducing sugars produced. It was found that the changes in the amount of lignin directly affected the yield of reducing sugars. A maximum of 50% reduction in the lignin composition was obtained, which yielded a maximum of 75.3% total reducing sugars yield and 3.76 g/L of glucose. At optimum pretreatment conditions of 2% H2O2 loading at 75 ℃ for 150 min, 3.46 g/L glucose concentration with a 69.26% total reducing sugars yield was obtained after 48 hr. of the hydrolysis process. Pretreatment resulted in lowering of crystallinity and distortion of the sawdust after the pretreatment, which was further confirmed by XRD and SEM results.

Furfural Production From Xylose by Using Formic Acid and Sulfuric Acid (포름산 및 황산 촉매를 이용한 자일로스로부터 푸르푸랄 생산)

  • Lee Seungmin ;Kim Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.561-569
    • /
    • 2023
  • Furfural is a platform chemical that is produced from xylose, one of the hemicellulose components of lignocellulosic biomass. Furfural can be used as an important feedstock for phenolic compounds or biofuels. In this study, we compared and optimized the conditions for producing furfural from xylose in a batch system using two types of catalysts: sulfuric acid, which is commonly used in the furfural production process, and formic acid, which is an environmentally friendly catalyst. We investigated the effects of xylose initial concentration (10 g/L~100 g/L), reaction temperature (140~200 ℃), sulfuric acid catalyst (1~3 wt%), formic acid catalyst (5~10 wt%), and reaction time on the furfural yield. The optimal conditions according to the type of catalyst were as follows. For sulfuric acid catalyst, 3 wt% of catalyst concentration, 50 g/L of xylose initial concentration, 180 ℃ of temperature, and 10min of reaction time resulted in a maximum furfural yield of 59.0%. For formic acid catalyst, 5 wt% of catalyst concentration, 50 g/L of xylose initial concentration, 180 ℃ of temperature, and 150 min of reaction time resulted in a furfural yield of 65.3%.

Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO2

  • Du-Kyeong Kang;Seung-Hwa Kim;Jung-Hoon Sohn;Bong Hyun Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1403-1411
    • /
    • 2023
  • Carbon dioxide (CO2) is the most abundant component of greenhouse gases (GHGs) and directly creates environmental issues such as global warming and climate change. Carbon capture and storage have been proposed mainly to solve the problem of increasing CO2 concentration in the atmosphere; however, more emphasis has recently been placed on its use. Among the many methods of using CO2, one of the key environmentally friendly technologies involves biologically converting CO2 into other organic substances such as biofuels, chemicals, and biomass via various metabolic pathways. Although an efficient biocatalyst for industrial applications has not yet been developed, biological CO2 conversion is the needed direction. To this end, this review briefly summarizes seven known natural CO2 fixation pathways according to carbon number and describes recent studies in which natural CO2 assimilation systems have been applied to heterogeneous in vivo and in vitro systems. In addition, studies on the production of methanol through the reduction of CO2 are introduced. The importance of redox cofactors, which are often overlooked in the CO2 assimilation reaction by enzymes, is presented; methods for their recycling are proposed. Although more research is needed, biological CO2 conversion will play an important role in reducing GHG emissions and producing useful substances in terms of resource cycling.

Kinetics of esterification of food waste oil by solid acid catalyst and reaction optimization (고체 산 촉매를 이용한 고산가 음폐유의 에스테르화 반응 동역학 연구 및 반응 최적화)

  • Lee, Hwa-Sung;Lee, Joon-Pyo;Lee, Jin-Suk;Kim, Deog-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.683-693
    • /
    • 2017
  • Transport biofuels have been recognized as a promising means to resolve the following issues like global warming, oil depletion and environmental pollutions. Among various biofuels, biodiesel has several advantages such as less emission of air pollutants and higher cetane values compared to diesel oil. Demand for biodiesel in Korea is increasing that leads to higher dependence on the imported feedstocks. Therefore, it is important to utilize the waste materials collected domestically for biodiesel production. Food waste oil collected in waste treatment facility has not been used for biodiesel production due to high free fatty contents in the oil. In this work, biodiesel conversion of food waste oil by Amberlyst 15 was studied. Synthetic and actual food waste oils have been used in the study. First, the effects of the major operating parameters including reaction temperature, methanol to oil molar ratio and catalyst loading on the conversion rates and yields were determined with synthetic waste oil. Kinetic modelling work was also done to determine the activation energy of the reaction. From the work, optimization reaction conditions were determined to be 383K, 1: 26.1 for methanol molar ratio to oil, 10 wt.% for catalyst loading and 360 min for reaction time. Activation energy of the reaction is determined to be 29.75 kJ/mol, lower than those reported in the previous works. So the solid catalyst, Amberlyst 15, was more efficient for esterification than the solid catalysts employed in the other works. Agitation rates have the negligible effects on the conversion rates and yields. With the identified optimization conditions, conversion of the actual food waste oil was also carried out. The esterification yield of actual food waste oil in 60 min was 13% lower than that of synthetic waste oil but the final yields in 240 min were similar each other, 98.12% for synthetic oil and 97.62% for actual waste oil.

Process Development and Economic Evaluation for Catalytic Conversion of Furfural to Tetrahydrofurfuryl Alcohol (푸르푸랄의 화학적 촉매전환을 통한 테트라히드로푸르푸릴 알코올 생산 공정 개발 및 경제성 평가)

  • Byun, Jaewon;Han, Jeehoon
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.609-617
    • /
    • 2017
  • Lignocellulosic biomass is a renewable resource for production of biofuels and biochemicals. Furfural (FF) is an important platform chemical catalytically derived from the hemicellulose fraction of biomass. Tetrahydrofurfuryl alcohol (THFA) is a FF derivative and can be used as an eco-friendly solvent with thermal and chemical stability. Despite large numbers of experimental studies for catalytic conversion of FF to THFA, few research have conducted on the economic feasibility for large-scale THFA production from FF. At the stage of assessment of the potential for commercialization of conversion technology, a large-scale process study is required to identify technological bottleneck and to obtain information for solving scale-up problems. In this study, process simulation and technoeconomic evaluation for catalytic conversion of FF to THFA are performed, as the following three steps: integrated process design, heat integration, and economic evaluation. First, a large-scale process including conversion and separation processes is designed based on experimental results. When the FF processing rate is 255 tonnes per day, the FF-to-THFA yields are 63.2~67.9 mol%. After heat integration, the heating requirements are reduced by 14.4~16.4%. Finally, we analyze the cost drivers and calculate minimum selling price of THFA by economic evaluation. The minimum selling price of THFA for the developed process are $2,120~2,340 per tonne, which are close to the current THFA market price.

Global Trends of Bioethanol Science Information (바이오에탄올 학술정보 분석)

  • Kil, Sang-Cheol;Kim, Sang-Woo;Oh, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.589-597
    • /
    • 2012
  • Recently, an understanding of new sources of liquid hydrocarbons such as bioethanol is economically very important. Bioethanol is actually ethyl alcohol or also referred to as ethanol, identical to drinking alcohol by its composition. There are mainly two ways of producing ethanol, namely by synthesis of hydrocarbons and from biomass. Only the second approach deserves the terminology 'bioethanol'. The present dissertation is also designed with purpose of developing the energy-saving process for the separation of bioethanol. The world population is expected to grow past 8 billion by 2030 which are almost 60% in Asia Pacific. History has shown that energy use rises much faster than population expands. World wide demand for energy will increase significantly during the next 15 years driven by population growth and the transition of emerging markets into the global economy. In developing nations, a smaller increment in GDP per capita yields a higher increment in energy consumption compared to developed countries. In this study, we analised total 2,454 dissertations for the bioethanol during the 2001~2012 periods by the programs of 'web of science' and 'recently developped program by Korea Institute of Science Technology Information'.

Lignin Removal from Barley Straw by Ethanosolv Pretreatment (Ethanosolv 전처리에 의한 보릿짚의 리그닌 제거)

  • Kim, Young-Ran;Yu, An-Na;Chung, Bong-Woo;Han, Min-Hee;Choi, Gi-Wook
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.527-532
    • /
    • 2009
  • Lignocellulose represents a key sustainable source of biomass for transformation into biofuels and bio-based products. Unfortunately, lignocellulosic biomass is highly recalcitrant to biotransformation, both microbial and enzymatic, which limits its use and prevents. As a result, effective pretreatment strategies are necessary. The vast majority of pretreatment strategies have focused on achieving a reduction of lignin content. In this work, an ethanosolv pretreatment has been evaluated for extracting lignin from barley straw. 75% ethanol was used as a pretreatment solvent to extract lignin from barley straw. The influence on delignification of three independent variables are temperature, time, catalyst (1 M $H_2SO_4$) dose. The best pretreatment condition observed was $180^{\circ}C$, 120 min, 0.2% $H_2SO_4$ and delignification was 38%. A combined roasting and ethanosolv, 2-step pretreatment, was developed in order to improve the delignification. Roasting didn't increase the delignification but reduced the pretreatment time. X-ray diffraction results indicated that these physical changes enhance the enzymatic digestibility in the ethanosolv treated barley straw. The cellulose in the pretreated barley straw becomes more crystalline without undergoing ethanosolv.

Present Status and Prospects of Marine Chemical Bioindustries (해양화학생물산업의 현황과 전망)

  • Lee, Sun-Bok;Cho, Sun-Ja;Lee, Shin-Youb;Paek, Kwang-Hyun;Kim, Jeong-A;Chang, Jin-Hwa
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.495-507
    • /
    • 2009
  • As we move into the 21st century, the importance of marine resources is certain to increase due to the accelerated exhaustion of land resources. For the sustainable development of the world, therefore, we need to develop marine chemical bioindustries which enable us to produce industrial chemicals, advanced materials, fuels, and minerals from marine resources such as seaweeds and seawater. In this review, we selected five marine chemical bioindustries which include 1) seaweed polysaccharide industry, 2) marine advanced materials industry, 3) marine biofuel industry, 4) marine sea salt industry, and 5) deep-sea water industry, and discussed the current status and future prospects of each industry sector. It has been assessed that the future of marine chemical bioindustry looks very promising although there are many needs for more intensive research investments on marine bioprocess development through close cooperation between marine biologists and biochemical engineers.