References
- Chheda, J. N., Huber, G. W. and Dumesic, J. A., "Liquid-phase Catalytic Processing of Biomass-derived Oxygenated Hydrocarbons to Fuels and Chemicals," ANGEW CHEM INT EDIT, 46(38), 7164-7183(2007). https://doi.org/10.1002/anie.200604274
- Jeong, G.-T., "Production of Chemical Intermediate Furfural from Renewable Biomass Miscanthus Straw," Korean Chem. Eng. Res., 52(4), 492-496(2014). https://doi.org/10.9713/kcer.2014.52.4.492
- Lee, S.-G. and Park, S. H., "Industrial Biotechnology: Bioconversion of Biomass to Fuel, Chemical Feedstock and Polymers," Korean Chem. Eng. Res., 44(1), 23-34(2006).
- Ahn, S. J., Cayetano, R. D., Kim, T. H. and Kim, J. S., "Lactic Acid Production from Hydrolysate of Pretreated Cellulosic Biomass by Lactobacillus Rhamnosus," Korean Chem. Eng. Res., 53(1), 1-5(2015). https://doi.org/10.9713/kcer.2015.53.1.1
- Cayetano, R. D., Kim, T. H. and Um, B.-H., "Bioconversion Strategy in Conversion of Lignocellulosic Biomass upon Various Pretreatment Methods using Sulfuric Acid and Aqueous Ammonia," Korean Chem. Eng. Res., 52(1), 45-51(2014). https://doi.org/10.9713/kcer.2014.52.1.45
- Kim, J. B. and Kim, J. S., "Enhancement of Enzymatic Hydrolysis of Lignocellulosic Biomass by Organosolv Pretreatment with Dilute Acid Solution," Korean Chem. Eng. Res., 54(6), 806-811(2016). https://doi.org/10.9713/kcer.2016.54.6.806
- Martin, M. A., "First Generation Biofuels Compete," New Biotechnol, 27(5), 596-608(2010). https://doi.org/10.1016/j.nbt.2010.06.010
- Naik, S. N., Goud, V. V., Rout, P. K. and Dalai, A. K., "Production of First and Second Generation Biofuels: a Comprehensive Review," Renew Sust. Energ. Rev., 14(2), 578-597(2010). https://doi.org/10.1016/j.rser.2009.10.003
- Council, N. R., Renewable fuel standard: potential economic and environmental effects of US biofuel policy, National Academies Press (2012).
- Sen, S. M., Alonso, D. M., Wettstein, S. G., Gurbuz, E. I., Henao, C. A., Dumesic, J. A. and Maravelias, C. T., "A Sulfuric Acid Management Strategy for the Production of Liquid Hydrocarbon Fuels Via Catalytic Conversion of Biomass-derived Levulinic Acid," Energ. Environ. Sci., 5(12), 9690-9697(2012). https://doi.org/10.1039/c2ee22526c
- Sen, S. M., Henao, C. A., Braden, D. J., Dumesic, J. A. and Maravelias, C. T., "Catalytic Conversion of Lignocellulosic Biomass to Fuels: Process Development and Technoeconomic Evaluation," Chem. Eng. Sci., 67(1), 57-67(2012). https://doi.org/10.1016/j.ces.2011.07.022
- Han, J., Sen, S. M., Alonso, D. M., Dumesic, J. A. and Maravelias, C. T., "A Strategy for the Simultaneous Catalytic Conversion of Hemicellulose and Cellulose From Lignocellulosic Biomass to Liquid Transportation Fuels," Green Chem., 16(2), 653-661(2014). https://doi.org/10.1039/C3GC41511B
- Han, J., Luterbacher, J. S., Alonso, D. M., Dumesic, J. A. and Maravelias, C. T., "A Lignocellulosic Ethanol Strategy via Nonenzymatic Sugar Production: Process Synthesis and Analysis," Bioresource Technol., 182, 258-266(2015). https://doi.org/10.1016/j.biortech.2015.01.135
- Han, J., Sen, S. M., Luterbacher, J. S., Alonso, D. M., Dumesic, J. A. and Maravelias, C. T., "Process Systems Engineering Studies for the Synthesis of Catalytic Biomass-to-fuels Strategies," Comput. Chem. Eng., 81, 57-69(2015). https://doi.org/10.1016/j.compchemeng.2015.04.007
- Kim, S. and Han, J., "A Catalytic Biofuel Production Strategy Involving Separate Conversion of Hemicellulose and Cellulose Using 2-sec-butylphenol (SBP) and Lignin-derived (LD) Alkylphenol Solvents," Bioresource Technol., 204, 1-8(2016). https://doi.org/10.1016/j.biortech.2015.12.075
- Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Montague, L., Slayton, A. and Lukas, J., Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover, National Renewable Energy Laboratory (NREL), Golden, Colorado (2002).
- Kazi, F. K., Fortman, J., Anex, R., Kothandaraman, G., Hsu, D., Aden, A. and Dutta, A., Techno-economic analysis of biochemical scenarios for production of cellulosic ethanol, National Renewable Energy Laboratory (NREL), Golden, Colorado (2010).
- Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Lukas, J., Olthof, B. and Worley, M., Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover, National Renewable Energy Laboratory (NREL), Golden, Colorado (2011).
- Byun, J. and Han, J., "Process Synthesis and Analysis for Catalytic Conversion of Lignocellulosic Biomass to Fuels: Separate Conversion of Cellulose and Hemicellulose Using 2-sec-butylphenol (SBP) Solvent," APPL ENERG, 171, 483-490(2016). https://doi.org/10.1016/j.apenergy.2016.03.088
- Han, J., "Process Systems Engineering Studies for Catalytic Production of Bio-based Platform Molecules from Lignocellulosic Biomass," Energ Convers Manage, 138, 511-517(2017). https://doi.org/10.1016/j.enconman.2017.02.027
- Kim, S. and Han, J., "Enhancement of Energy Efficiency and Economics of Process Designs for Catalytic co-production of Bioenergy and Bio-based Products from Lignocellulosic Biomass," INT J ENERG RES, (2017).
- Lange, J. P., van der Heide, E., van Buijtenen, J. and Price, R., "Furfural - a Promising Platform for Lignocellulosic Biofuels," Chemsuschem, 5(1), 150-166(2012). https://doi.org/10.1002/cssc.201100648
-
Tike, M. A. and Mahajani, V. V., "Kinetics of Liquid-phase Hydrogenation of Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol over a Ru/
$TiO_2$ Catalyst," Ind. Eng. Chem. Res., 46(10), 3275-3282 (2007). https://doi.org/10.1021/ie061137m - http://www.frontresearch.com/news/global-tetrahydrofurfurylalcohol-market-witnesses-strong-competition/.
- Nagaraja, B., Padmasri, A., Raju, B. D. and Rao, K. R., "Vapor Phase Selective Hydrogenation of Furfural to Furfuryl Alcohol over Cu-MgO Coprecipitated Catalysts," J. Mol. Catal A: Chem, 265(1), 90-97(2007). https://doi.org/10.1016/j.molcata.2006.09.037
-
Zhang, B., Zhu, Y., Ding, G., Zheng, H. and Li, Y., "Selective Conversion of Furfuryl Alcohol to 1,2-pentanediol over a Ru/
$MnO_x$ Catalyst in Aqueous Phase," Green. Chem., 14(12), 3402-3409(2012). https://doi.org/10.1039/c2gc36270h - Han, J., "Integrated Process for Simultaneous Production of Jet Fuel Range Alkenes and N-methylformanilide Using Biomassderived Gamma-valerolactone," J. Ind. Eng. Chem., 48, 173-179 (2017). https://doi.org/10.1016/j.jiec.2016.12.036