• Title/Summary/Keyword: biofilm thickness

Search Result 50, Processing Time 0.023 seconds

Antimicrobial effect of toothbrush with light emitting diode on dental biofilm attached to zirconia surface: an in vitro study (지르코니아 표면에 부착된 바이오필름에 대한 LED 치솔의 항균효과)

  • Park, Jong Hew;Kim, Yong-Gun;Um, Heung-Sik;Lee, Si Young;Lee, Jae-Kwan;Chang, Beom-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.3
    • /
    • pp.160-169
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the antimicrobial effects of a toothbrush with light-emitting diodes (LEDs) on periodontitis-associated dental biofilm attached to a zirconia surface by static and dynamic methods. Materials and Methods: Zirconia disks (12 mm diameter, 2.5 mm thickness) were inserted into a 24-well plate (static method) or inside a Center for Disease Control and Prevention (CDC) biofilm reactor (dynamic method) to form dental biofilms using Streptococcus gordonii and Fusobacterium nucleatum. The disks with biofilm were subdivided into five treatment groups-control, commercial photodynamic therapy (PDT), toothbrush alone (B), brush with LED (BL), and brush with LED+erythrosine (BLE). After treatment, the disks were agitated to detach the bacteria, and the resulting solutions were spread directly on selective agar. The number of viable bacteria and percentage of bacterial reduction were determined from colony counts. Scanning electron microscopy (SEM) was performed to visualize alterations in bacterial morphology. Results: No significant difference in biofilm formation was observed between dynamic and static methods. A significant difference was observed in the number of viable bacteria between the control and all experimental groups (P < 0.05). The percentage of bacterial reduction in the BLE group was significantly higher than in the other treated groups (P < 0.05). SEM revealed damaged bacterial cell walls in the PDT, BL, and BLE groups, but intact cell walls in the control and B groups. Conclusion: The findings suggest that an LED toothbrush with erythrosine is more effective than other treatments in reducing the viability of periodontitis-associated bacteria attached to zirconia in vitro.

A Study on the Start-up Method and Characteristics of Microorganisms Attachment in an Anaerobic BAC FluidizedBed Reactor (혐기성 BAC 유동층 반응기에서 Start-up 방법 및 미생물 부착 특성 연구)

  • 박동일;신승훈;안재동;최석규
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.1
    • /
    • pp.82-90
    • /
    • 1996
  • The objectives of this study were to examine the start-up method and characteristics of biomass attachment on the media in an anaerobic fluidized bed reactor(AFBR). The media adopted was the granular activated carbon which was successfully capable of adsorbing organics and biomass. The reactor was operated at 5 kg $COD/m^3\cdot day$ and 24hr of HRT. There were important problems in the AFBR's start-up, which has been reported very long and unstable. Therefore, this research was to solve the problem of the start-up and it was performed, comparing two start-up ways that were initial fluidized system and initial static-fluidized system. The results were summarized as follows: (1) On the whole initial static-fluidized system was superior to initial fluidized system in the aspects of biogas production rate, methane content and COD removal efficiency etc. (2) At the steady state methane production rate and recoverable bioenergy of initial static-fluidized system were $2.074 m^3CH_4/m^3\cdot day$, $0.488 m^3CH_4/kgCOD_{removed}\cdot day$, and 81.3kcal/day, respectively. (3) Thickness of biofilm was about $5.11 \mu m$, $\rho_{bw}$ and $\rho_{bd}$ were $1.022 g/cm^3, 0.0953g/cm^3$ respectively. (4) Biomass concentration of fluidized state was about 35 mg/g GAC. In conclusion the efficient method on the start-up of the AFBR using GAC as media was initial static-fluidized system and the period of static state needed to reach steady state was considered about twenty days.

  • PDF

Characteristics and Biological Kinetics of Nitrogen Removal in Wastewater using Anoxic-RBC Process (무산소-RBC 공정을 이용한 질소제거 특성 및 동력학적 인자 도출)

  • 최명섭;손인식
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1085-1093
    • /
    • 2003
  • This study was conducted to investigate anoxic-RBC (rotating biological contactor) and its application in advanced municipal wastewater treatment process to remove biologically organics and ammonia nitrogen. Effluent COD and nitrogen concentration increased as the increase of volumetric loading rate. But, the concentration changes of NO$_2$$\^$-/ -N and NO$_3$$\^$-/ -N were little, as compared to COD and NH$_4$$\^$+/ -N. When the volumetric loading rate increased, COD removal efficiency and nitrification appeared very high as 96.7∼98.8% and 92.5∼98.8%, respectively. However, denitrification rate decreased to 76.2∼88.0%. These results showed that the change of volumetric loading rate affected to the denitrification rate more than COD removal efficiency or nitrification rate. The surface loading rates applied to RBC were 0.13~6.0lg COD/㎡-day and 0.312∼1.677g NH$_4$$\^$+/-N㎡-day and they were increased as the increase of volumetric loading rate. However, the nitrification rate showed higher than 90%. The thickness of the biofilm in RBC was 0.130 ∼0.141mm and the density of biofilm was 79.62∼83.78mg/㎤. They were increased as surface loading rate increased. From batch kinetic tests, the k$\_$maxH/ and k$\_$maxN/ were obtained as 1.586 g C/g VSS-day, and 0.276 g N/g VSS-day, respectively. Kinetic constants of denitrifer in anoxic reactor, Y, k$\_$e/, K$\_$s/, and k were 0.678 mg VSS/mg N, 0.0032 day$\^$-1/, 29.0 mg N/l , and 0.108 day$\^$-l/, respectively. P and K$\_$s/, values of nitrification and organics removal in RBC were 0.556 g N/㎡-day and 18.71 g COD/㎡-day, respectively.

Electricity Generation and Microbial Community variation in Microbial Fuel Cell with various Electrode Combinations. (다양한 탄소전극조합에 따른 미생물 연료전지의 전기발생량 및 미생물 군집변화)

  • Kwon, Jae-Hyeong;Choi, Soo-Jung;Cha, Jae-Hwan;Kim, Hyo-Soo;Kim, Ye-Jin;Yu, Jae-Cheul;Kim, Chan-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.87-96
    • /
    • 2010
  • The electrode material is one of the factors affecting the power production of microbial fuel cell. In this study, effects of carbon electrode material, thickness and configuration on the power density, biofilm formation and microbial community diversity of microbial fuel cell were investigated. To optimize the anode-cathode electrode assembly, seven lab-scale reactors which had various carbon electrode constructions were operated in continuous mode. Under the steady state condition, the electrode combination of graphite felt (6 mm) with hole showed the highest cell voltage of 238 mV and the coulombic efficiency of 37%. As a result of SEM analysis, the bacteria growing on surface of knitted type of carbon cloth and graphite felt electrode ncreased significantly. The change of dominant species between seeding sludge and biofilm on the surface of anode electrode, microbial analysis with PCR-DGGE showed that the dominant species of seeding sludge are quite different from those of biofilm on the surface of each anode electrode. Especially Geobacter sp., a well known electrochemical bacteria, was found as the dominant species of the electrode combination with graphite felt.

A Study on Optimal Packing Volume of Media in Swirl Flow Biological Fluidized Bed (선회류 생물학적 유동상의 최적 메디아 충전량에 관한 연구)

  • Choi, Doo-Hyoung;Kim, Hwan-Gi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.331-340
    • /
    • 2000
  • The existing two-phase biological fluidized bed has some problems such as limit of oxygen transfer and blockade of fluidized distributor. In this study, three-phase swirl flow biological fluidized bed has designed to solve the problems and to investigate its running characteristics. TOC of influent synthetic wastewater was approximately $70mg/{\ell}$. HRT of reactor was 1.6 hours. Mean particle size of sand, as packing media, was 0.397mm and packing volume was varied from $200m{\ell}/{\ell}$ to $600m{\ell}/{\ell}$ by stages in the bed. The amount of biomass and effluent water quality was throughly investigated in the bed. Showing experiment results from the above conditions, it was possible to solve the problems of existing fluidized bed and to keep DO of $3mg/{\ell}$ or more. And it was also TOC removal rate of 91 to 94 %, MLVSS of 2,360 to $3,860mg/{\ell}$, MLVSS per g-media of 8.4 to 17.3 mg/g, F/M ratio of 0.59 to $1.04kg-TOC/kg-MLVSS{\cdot}day$, biofilm thickness of $35{\sim}71{\mu}m$ and sludge productivity of 1.03 to $2.35kg-SS/m^3{\cdot}day$. Optimal conditions in this experimental were as follows.; those were biofilm thickness of approximately $54{\mu}m$. MLVSS per g-media of 13 mg and media packing volume of 350 to $400m{\ell}/{\ell}$ when F/M ratio was low, treatment efficiency was high and sludge productivity was low. Showing the media with optics microscope in this optimal condition, attached microbes such as Epistylis sp. were observed. From SEM photographs, it showed that Coccus adhere to and grow on the media surface.

  • PDF

A Study on the Rotating Biological Contactors for the Nitrification of Sewage (회전원판공정을 이용한 하수의 질산화에 관한 연구)

  • Jung, Kun-jin;Lee, Sang-Soo;Kim, Si-Hyeon;Park, Kyoo-hong
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.189-199
    • /
    • 2002
  • Nitrogen, in its various forms, can deplete dissolved oxygen levels in receiving waters, stimulate aquatic growth, exhibit toxicity toward aquatic life and affect the suitability of sewage for reuse. Pilot-scale Rotating Biological Contactor(RBC) experiments were conducted to examine biological nitrification, respectively, of municipal sewage with five different internal recirculation ratios of 0, 1, 2, 3, and 4 using the constant hydraulic loading of $205L/m^2{\cdot}day$. The use of internal recirculation improved nitrification on account of the dilution of biodegradable organic carbon in influent sewage down to 15 mg/L of $SBOD_5$ or less. Ammonium nitrogen of $14.3{\pm}2.4%$ was consumed by cellular assimilation without the occurrence of denitrification. The thickness of biofilm didn't seem effect significantly the nitrification and denitrification. Nitrification with internal recirculation was found to occur using hydraulic loading rate of as high as $205L/m^2{\cdot}day$, which was beyond the generally known values of it.

Evaluation of Biological Aerated Filter Position on Water Treatment Processes for Water Quality Improvement (상수원수 전처리 시 효율향상을 위한 생물여과 반응기 위치선정)

  • Choi, Hyung-Joo;Choi, Dong-Ho;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.677-686
    • /
    • 2006
  • This study was the effectiveness of two downflow BAF(Biological Aerated Filter) systems at conventional water treatment system. A BAF reactor placed in front of coagulation and sedimentation tanks(Mode A) and after coagulation and sedimentation tanks(Mode B) that were compared in terms of removal of suspended particles, organic matters, and ammonia nitrogen. The suspended particles removal efficiency was over 80% for both Mode A and B, although Mode A gave slightly better results. $BOD_5$ removal and nitrification efficiencies were more than 90% for both reactor. The organic matter and ammonia removals were also superior in the Mode A. The biofilm thickness and biomass increased as increment of EBCT and the upper part of reactor more about 30% than lower part. The specific oxygen uptake rate(SOUR) was higher the upper part of reactor and Mode A than the lower part of reactor and Mode B. A cost analysis showed that the Mode A system was more cost effectiveness. It could save the coagulant dose by about 67% and the chlorine demand by about 95%. The ideal place to put the BAF reactor was in front of the coagulation/sedimentation process.

Efficiency of Nutritive Salts Removal and Algae Growth Inhibition Using a Fibrous Carrier (섬유상 담체를 이용한 영양염류 제거 및 조류 증식 억제에 관한 연구)

  • Park, Sin-Hae;Kang, Dae-Jong;Yang, Kyeong-Soon;Jeon, Soo-Bin;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.257-264
    • /
    • 2015
  • Conventional physicochemical technologies for algae growth inhibition have economical and environmental pollution problems. This study attempted to overcome the problems by nature-friendly biological inhibition technology using fibrous carrier. The experimental results showed that the most effective carrier material, polyester, exhibited the highest biofilm thickness. The removal efficiency for nutrient salts, such as nitrogen and phosphorous, and algae growth inhibition of polyester carrier was 14.59%, 6.36%, and 77%, respectively, which is higher than for control group. These result indicate that the polyester carrier is available in eutrophic lake.

Hydrophilic Coating and Characterization of PVDF Membrane with Flower Type Cross-section made from Thermally Induced Phase Separation (열유도 상분리로 제조한 플라워 형태 단면을 갖는 PVDF 분리막의 친수성 코팅 및 특성평가)

  • Im, Kwang Seop;Lee, Jeong Woo;Jang, Jae Young;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.362-376
    • /
    • 2019
  • In this study, hydrophilic coating characteristics of PVDF [poly(vinylidene fluoride)] hollow fiber membranes with flower type cross-section prepared by thermally induced phase separation were studied. The hollow fiber used in this study was provided from PureEnvitech Co. Ltd., and the hydrophilic coating experiment was performed with different concentration and number of coating of PEBAX 1657, 2533 and 3533 block copolymer solution using a dip coating method. The hydrophilic coated hollow fiber membrane was characterized to scanning microscope and contact angle measurements to determine the degree of hydrophilization. As a result of SEM characterization, it was confirmed that the thickness of the coating layer increased as the coating concentration increased and the number of coatings increased. Contact angle of surface of hollow fibers decreased as the concentration of the coating solution increased and the number of coatings increased. Gas permeance of oxygen gas was measured for the application of the hydrophilized hollow fiber to Membrane Areated Biofilm Reactor. As a result of gas permeation test, it was confirmed that gas permeance decreased with increasing coating concentration and number of coatings, and the more hydrophilized hollow fiber coated with PEBAX 1657 showed lower gas permeance than those coated with PEBAX 2533 and 3533.

Changes of Nitrifying Bacterial Populations in Anaerobic-Anoxic-Oxic Reactors (혐기-무산소-호기 반응조내 질화세균군의 변화)

  • Park, Jong-Woong;Lee, Young-Ok;Go, Jun-Heok;Ra, Won-Sik;Lim, Uk-Min;Park, Ji-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.138-144
    • /
    • 2005
  • This study was carried out to investigate the changes of nitrifying bacterial populations including Nitrosomonas sp. and Nitrobacter sp. in $A^2/O$ pilot plant with the configuration of anaerobic-anoxic-oxic reactors. The suspended nitrifying bacterial populations in mixed liquor and those of attached populations on granular carrier surface made by molded waste tire were analyzed by Fluorescent in situ Hybridization(FISH) method. The nitrification rate of a pilot plant showed the value of $1.97{\sim}2.98\;mg\;N/g$ MLVSS hr. The ratios of suspended ammonia oxidizer including Nitrosomonas sp. (NSO) to total bacteria in each reactor were oxic < anoxic < anaerobic. On the contrary, the ratios of suspended nitrite oxidizer including Nitrobacter sp. (NIT) were anaerobic < anoxic < oxic. The thickness, dry density and mass of the attached biomass on granular carriers were $180{\sim}188\;{\mu}m$, $38.5{\sim}43.9\;mg/cm^3$, $29.4{\sim}32.5\;mg/g$, respectively. Also, the ratios of attached nitrifier to total bacteria on granular carriers were similar regardless of ammonia/nitrite-oxidizer (NSO; 3.2%, NIT; 2.8%) and very low compared to those(NSO; $22.8{\sim}28.4%$, NIT; $17{\sim}26%$) of suspended nitrifier.