• Title/Summary/Keyword: biofilm removal

Search Result 219, Processing Time 0.022 seconds

The Submerged Biofilm Process using Oyster-Shell Media for Wastewater Treatment and Prediction (굴패각을 담체로 사용한 침적고정 생물막공법 및 예측)

  • 문병현;이택순
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.671-678
    • /
    • 1997
  • This study was conducted to use oyster shell as media for biological wastewater treatment. The comparison between the removal efficiencies of the activated sludge and the submerged biofilm process with oyster shell media (5% of reactor volume) for domestic sewage treatment was made. The contaminant removal efficiencies of the submerged process were higher than that of the activated sludge process. And the removal efficiencies of the submerged biofilm process with oyster shell media of 10% and 18% were Investigated at various loading rate. The removal efficiencies of 10% were higher than that of the 18% during the experimental period. The effluent concentration from the sub- merged bloom process using oyster shell media was prediceted by the Stover-Kincannon model.

  • PDF

A Comparative Study on Treatment Efficiencies by Anaerobic Packed and Fluidized-bed Biofilm of Livestock Wastewater (축산폐수의 혐기성 충전층과 유동층 생물막법에 의한 처리효율의 비교연구)

  • 김은호;박현건;장성호
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.54-61
    • /
    • 1998
  • This study was conducted in order to evaluate the treatment efficiencies of anaerobic packed and fluidized-bed biofilm and to investigate applicability in treating livestock wastewater. Biocarbonate alkalinity(BA) and volatile fatty acid(VFA) were about 3,230-3,270 mg/l, 3,790-3,126 mg/l(as CaCO$_3$) and 224-402 mg/l, 141-387 mg/l(as CH$_3$COOH), and VFA/BA ratio was about 0.069~0.12, 0.045-0.12 in packed and fluidized-bed biofilm. When COD loading rate was 6.0 kg COD/$m^3\cdot$ day in packed and fluidized-bed biofilm, methane gas production were 3.23 l/day and 4.38 l/day, respectively. In the same COD loading rate, methane gas production volumes per kg COD removal were 0.25 m$^3$ CH$_4$/kg COD$_{rm}$ and $0.28 m^3 CH_4/kg COD^{rm}$, respectively. At this time, it could be estimated that fluidized-bed biofilm was more high. In case of HRT 0.94 day(6.0 kg COD/$m^3\cdot$ day) and 11 day(0.5 kg COD/$m^3\cdot$ day), packed-bed biofilm showed 59% and 81% COD removal efficiency, respectively. While fluidized-bed biofilm showed 72% and 85% removal efficiency, respectively. It was showed that fluidized-bed biofilm was more efficient. Packed-bed biofilm was higher than fluidized in treatment efficiencies of organic matters, but required continuous treatment using combined system, because it was very exceeded over an environmental standard solidified from '96 year. In operating fluidized-bed biofilm, if farm house consider high power cost according to high circulation ratio in an economic point of view, it would have an effect that farm house use packed-bed biofilm as combined system in treating livestock wastewater.

  • PDF

The Study on Evaluating Performances of Lab Sacle-Advanced $A_{2}O$ with Changing System Using Biofilm Process (생물막 담체를 이용한 실험실 규모 $A_{2}O$공법의 시스템 변형에 따른 고도처리 성능 평가에 관한 연구)

  • Kim, Min-Sik;Kang, Gu-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.209-218
    • /
    • 2012
  • Recently, as reinforced water quality standards for wastewater has been announced, more efficient and more powerful wastewater treatment processes are required rather than the existing activated sludge process. In order to meet this demands, we evaluate Task 1-4 about lab scale $A_{2}O$ process using biofilm media. Task 1, 2, and 3 use 'Module A' which has 4 partitions (Anoxic/Anerobic/Oxic/Oxic). Task 4 uses 'Module B' which has 2 partitions including a denitrification reactor with an Inclined plug flow reactor (IPFR) and a nitrification reactor with biofilm media. The denitrification reactor of Module B is designed to be upward flow using IPFR. The result of evaluating at each Task has shown that attached growth system has better capacity of removal efficiency for organic matter and nitrogen with the exception of phosphorus. Task 4 which has the most outstanding removal efficiency has 90.5% of $BOD_{5}$ removal efficiency, 97.8% of ${NH_4}^{+}-N$ removal efficiency, 65% of T-N removal efficiency and 92% of T-P removal efficiency with additional chemical phosphorus removal system operated at HRT 9hr, Qi:Qir 1:2, and BOD/T-N ratio 2.7.

Performance and Operation of Biological Activated Carbon (생물활성탄접촉조의 성능과 조작)

  • Lee, Gangchoon;Yoon, Taekyung
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.83-90
    • /
    • 2006
  • Performance and operation of BAC in ozone-BAC advanced water treatment process were investigated using the pilot scale test plant built in D water purification plant. The performance was evaluated by the removal efficiencies of DOC, BDOC, ammonia nitrogen and THMs. The effect of EBCT on DOC removal was experimented for an effective operating condition, and the amount of attached biofilm was analyzed in various water temperatures and position of BAC. Two removal mechanisms, adsorption and biological decomposition by attached biofilm, were predominant to decrease the concentration of various contaminants. DOC was removed 40%, and the removal rate was decreased in winter time due to the lowered activity of attached biofilm. BDOC was effectively removed. THMs and ammonia nitrogen were mainly removed not in ozonation process but in BAC. Water temperature deeply influenced in removal efficiency of ammonia nitrogen. The amount of attached biofilm depended on water temperature and height of packed activated carbon column. Considering DOC removal efficiency and design EBCT of commercial BAC plant, the proper EBCT was 12.5 minutes.

Phosphorus Removal in Pilot Plant Using Biofilm Filter Process from Farm Wastewater

  • Shin, Sung-Euy;Choi, Du-Bok;Lee, Choon-Boem;Cha, Wol-Suk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.325-331
    • /
    • 2006
  • Various environmental conditions affecting total phosphorus removal from farm wastewater in a biofilm filter process were investigated using loess balls and Chromobacterium LEE-38 at a pilot plant. When Chromobacterium LEE-38 was used, the removal efficiency of total phosphorous was approximately 10- or 5-fold higher than that of Acinetobacter CHA-2-14 or Acinetobacter CHA-4-5, respectively. When a loess ball of $11{\sim}14mm$ manufactured at a $960^{\circ}C$ calcining temperature was used, the removal efficiency of total phosphorous was 90.0%. When 70% of the volume fraction was used, the maximum efficiency of total phosphorus removal was 93.1%. Notably, when the initial pH was in the range of 6.0 to 8.0, the maximum removal efficiency of total phosphorus was obtained after 30 days. When the operating temperature was in the range of 30 to $55^{\circ}C$, the maximum removal efficiencies of total phosphorus, 95.6 to 94.6%, were obtained. On the other hand, at operating temperatures below $20^{\circ}C$ or above $40^{\circ}C$, the removal efficiency of total phosphorous decreased. Among the various processes, biofilm filter process A gave the highest removal efficiency of 96.4%. Pilot tests of total phosphorus removal using farm wastewater from the biofilm filter process A were carried out for 60 days under optimal conditions. When Acinetobacter sp. Lee-11 was used, the average removal efficiency in the p-adsorption area was only 32.5%, and the removal efficiencies of chemical oxygen demand (COD) and biological oxygen demand (BOD) were 56.7 and 62.5%, respectively. On the other hand, when Chromobacterium LEE-38 was used, the average removal efficiency was 95.1%, and the removal efficiencies of COD and BOD were 91.3 and 93.2%, respectively.

The High Rate Denitrification of Nitric Acid Wastewater in a Fluidized Bed Biofilm Reactor (유동층 생물막 반응기를 이용한 고농도 질산성 폐수의 탈질화에 관한 연구)

  • 신승훈;김민수;박동일;안재동;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.1
    • /
    • pp.95-104
    • /
    • 1997
  • The objectives of this study are to investigate the effect of media on the removal efficiency of nitrate-nitrogen and the biofilm thickness in the fluidized bed biofilm reactor(FBBR) used for the high rate denitrification of nitric acid wastewater. Granular activated carbon(GAC) of 1.274 mm diameter and sand of 0.455 mm diameter were used as the media in the FBBR of 0.05 m diameter and 1.5 m height. As the nitrate-nitrogen concentration of the influent was increased stepwise from 600 to 4800 mg/l, the nitrate- and nitrite-nitrogen concentration of the effluent, biofilm thickness and biofilm dry density were measured to study the effects of media on the denitrification efficiency. The biofilm thickness increased with the substrate loading rate, and the biofilm dry density decreased with the increase of the biofilm thickness. At the influent nitrate-nitrogen concentration of 2400 mg/l, the removal efficiency in the FBBR with GAC was 88%, while that in the FBBR with sand was 99.6%. The biofilm in the FBBR with GAC was so thick, 754.9 $\mu$m, as to increase the mass transfer resistance, compared to that, 143.7 $\mu$m, in the FBBR with sand. The maximum specific denitrification rate in the FBBR with GAC was 15.0 kg-N/m$^3\cdot$ day, while that in the FBBR with sand was 18.0 kg-N/m$^3\cdot$ day. The biomass concentration in the FBBR with sand exhibited the high value 37 kg/m$^3$.

  • PDF

Package of RBC/AFBR process for small-scale Piggery Wastewater Treatment (소규모 축산폐수 처리를 위한 RBC/AFBR공정의 Package화)

  • 임재명;권재혁;류재근
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.2
    • /
    • pp.43-52
    • /
    • 1996
  • Using rotating biological contactor(RBC) with artificial endogenous stage and aerobic fixed biofilm reactor(AFBR), organic material removal and biological nitrification of piggery wastewater has been studied at a pilot plant. RBC was operated in the endogenous phase at a interval of every 25 days. The concentration of COD, BOD and TKN in influent wastewater were from 2,940 to 3,800 mg/L, from 1,190 to 1,850 mg/L and from 486 to 754 mg/L respectively. The maximum active biomass content represented as VSS per unit aera was $2.0mg/cm$^{2}$ and biofilm dry density of $17mg/cm^{3}$ was observed at biofilm thickness of $900{\;}{\mu}m$. It was observed that the pilot scale RBC/AFBR process exhibited 72 percentage to 93 percentage of BOD removal, In order to obtain more than 90 percentage of BOD removal, the organic loading rate to the RBC/AFBR process should be maintained less than $0.09{\;}m^{3}/m^{2}{\cdot}day(125.9g{;\}BOD/m^{3}{\cdot}d$. The TKN removal efficiencies was from 45.5 to 90.9 percentage according to vary influent loading rate, It was estimated that the RBC/AFBR process consumed approximately 6.2 mg/L(as $CaCO_{3}$) of alkalinity per 1 mg/L of $NH_{3}$-N oxidized as the nitrification took piace.

  • PDF

Nitrogen and Phosphorous Removal from Wastewater by SBBR(Sequencing Batch Biofilm Reactor) System (연속회분식 생물막 반응기를 이용한 폐수중의 질소.인 제거)

  • 김조웅;이정복;최대건;임윤택;김두현;황재웅;이용희;반용병
    • KSBB Journal
    • /
    • v.13 no.6
    • /
    • pp.638-643
    • /
    • 1998
  • An investigation was made to develop new biofilm medium which could be applied to the Sequencing Batch Biofilm Reactor(SBBR) system for enhanced nutrient removal. 21 kinds of polyurethane media were tested fro adhesion ability for nitrifying bacteria. Nitrification rates were also tested by introducing synthetic wastewater containing ammonium-nitrogen to reactors with biofilm media. It was found that Z96-06 medium had higher selective adhension ability for nitrifying bacteria than the other biofilm media. The nitrification rate was 2.21 mg {{{{ { NH}`_{4 } ^{ +} }}}}-N /L$.$h$.$g MLSS when we operated the SBBR system containing Z96-06. Nitrification rate of the SBBR system increased approximately by 30% compared with that of the Sequencing Batch Reactor(SBR) system which did not contain biological carrier.

  • PDF

Nitrogen Removal using Autotrophic Microorganism in Membrane-Attached Biofilm Reactor (MABR) (Membrane-Attached Biofilm Reactor(MABR)에서의 독립영양 미생물을 이용한 질소 제거)

  • Shin, Jeong-Hoon;Sang, Byoung-In;Chung, Yun-Chul;Choung, Youn-Kyoo
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.624-629
    • /
    • 2005
  • The purpose of this study is to investigate the performance of nitrogen removal using autotrophic microorganism in the Membrane-Attached Biofilm Reactor (MABR). The treatment system consists of an aerobic MABR (R1) for nitrification and an anaerobic MABR (R2) for hydrogenotrophic denitrification. Oxygen and hydrogen were supplied through the lumen of hollow-fiber membranes as electron acceptor and donor, respectively. In phase Ι, simultaneous organic carbon removal and nitrification were carried out successfully in R1. In phase II, to develop the biofilm on the hollow-fiber membrane surface and to acclimate the microbial community to autotrophic condition, R1 and R2 were operated independently. The MABRs, R1 and R2 were connected in series continuously in phase III and operated at HRT of 8 hr or 4 hr with $NH_4{^+}-N$ concentration of influent, from 150 to 200 mgN/L. The total nitrogen removal efficiency reached the maximum value of 99% at the volumetric nitrogen loading rate of $1.20kgN/m^3{\cdot}d$ in the combined MABR system with R1 and R2. The results in this study demonstrated that the combined MABR system could operate effectively for the removal of nitrogen in wastewater not containing organic materials and can be used stably as a high rate nitrogen removal technology.

Treatment of Piggery Wastewater by Anoxic-Oxic Biofilm Process (준혐기-호기 생물막 공정을 이용한 돈사폐수 처리)

  • 임재명;한동준
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.1-12
    • /
    • 1997
  • This research aims to develop biofilm process for the nutrient removal of piggery wastewater. The developed process is the four stage anoxic-oxic biofilm process with recirculation of the final effluent. In summery, the results are as follows: 1. Nitrification in the piggery wastewater built up nitrite because of the high strength ammonia nitrogen. The nitrification of nitrobacter by free ammonia was inhibited in the total ammonia nitrogen loading rate with more than 0.2 kgNH$_{3}$-N/m$^{3}$·d. 2. The maximal total ammonia nitrogen removal rate was obtained at 22$\circ $C and without being affected by the loading rate. But total oxidized nitrogen production rate was largely affected by loading rate. 3. Autooxidation by the organic limit was a cause of the phosphorus release in the aerobic biofilm process. But the phosphorus removal rate was 90 percent less than the influent phosphorus volumetric loading rate of above 0.1 kgP/m$^{3}$·d. Therefore, the phosphorus removal necessarily accompanied the influent loading rate. 4. On the anoxic-oxic BF process, the total average COD mass balance was approximately 67.6 percent. Under this condition, the COD mass removal showed that the cell synthesis and metabolism in aerobic reactor was 42.8 percent and that the denitrification in anoxic reactor was 10.7 percent, respectively.

  • PDF