• Title/Summary/Keyword: biofilm inhibition

Search Result 91, Processing Time 0.034 seconds

Inhibition of adhesion and biofilm formation in Escherichia coli O157:H7 by diosmin (다이오스민(diosmin)에 의한 병원성 대장균 세포부착 및 생물막 형성 억제)

  • Kim, Hyun Jung;Kim, Seung Min
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.414-419
    • /
    • 2018
  • Escherichia coli O157:H7 is one of the most common foodborne pathogens responsible for outbreaks of hemorrhagic colitis, which can lead to the life-threatening hemolytic-uremic syndrome. In this study, we identified phytochemicals that specifically inhibit the expression of LEE operon in E. coli O157:H7. Among phytochemicals, diosmin decreased the adherence of E. coli O157:H7 towards Caco-2 cells in vitro (p<0.01) and its biofilm formation activity (p<0.05). Quantitative RT-PCR analysis revealed that the transcripts of Ler-regulated genes and genes related to curli production were significantly reduced in the presence of diosmin. However, diosmin does not affect bacterial viability, indicating that the resistance rate to diosmin was remarkably low. Overall, these results provide significant insights into the development of a novel anti-infective agent that is different from conventional antibiotics.

Low Temperature Effects on the Nitrification in a Nitrogen Removal Fixed Biofilm Process Packed with SAC Media

  • Jang, Se-Yong;Byun, Im-Gyu
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • A fixed biofilm reactor system composed of anaerobic, anoxic(1), anoxic(2), aerobic(1) and aerobic(2) reactor was packed with synthetic activated ceramic (SAC) media and adopted to reduce the inhibition effect of low temperature on nitrification activities. The changes of nitrification activity at different wastewater temperature were investigated through the evaluation of temperature coefficient, volatile attached solid (VAS), specific nitrification rate and alkalinity consumption. Operating temperature was varied from 20 to $5^{\circ}C$. In this biofilm system, the specific nitrification rates of $15^{\circ}C$, $10^{\circ}C$ and $5^{\circ}C$ were 0.972, 0.859 and 0.613 when the specific nitrification rate of $20^{\circ}C$ was assumed to 1.00. Moreover the nitrification activity was also observed at $5^{\circ}C$ which is lower temperature than the critical temperature condition for the microorganism of activated sludge system. The specific amount of volatile attached solid (VAS) on media was maintained the range of 13.6-12.5 mg VAS/g media at $20{\sim}10^{\circ}C$. As the temperature was downed to $5^{\circ}C$, VAS was rapidly decreased to 10.9 mg VAS/g media and effluent suspended solids was increased from 3.2 mg/L to 12.0 mg/L due to the detachment of microorganism from SAC media. And alkalinity consumption was lower than theoretical value with 5.23 mg as $CaCO_3$/mg ${NH_4}^+$-N removal at $20^{\circ}C$. Temperature coefficient (${\Theta}$) of nitrification rate ($20^{\circ}C{\sim}5^{\circ}C$) was 1.033. Therefore, this fixed film nitrogen removal process showed superior stability for low temperature condition than conventional suspended growth process.

Parameters Affecting Nitrite Accumulation in Submerged Biofilm Reactor (생물막 반응기에서 아질산성 질소의 축척에 미치는 영향인자)

  • Hwang, Byung-Ho;Hwang, Kyung-Yub;Choi, Eui-So
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1789-1797
    • /
    • 2000
  • The objective of this study was to assess parameters affecting nitrite accumulation, which offers advantages in terms of less aeration energy and carbon consumption for denitrification. The influence of the alkalinity to $NH_4{^+}-N$ concentration ratio, pH, FA(free ammonia) concentration and temperature on nitrite accumulation was investigated. The experiment was performed with supernatant from dewatering process of anaerobic digested sludge using a submerged biofilm reactor. The influent contains high strength of ammonium nitrogen and the alkalinity was insufficient for complete nitrification. An increased nitrite accumulation was observed with increase in alkalinity to $NH_4{^+}-N$ concentration ratio. The increase in alkalinity to $NH_4{^+}-N$ concentration ratio has been a maior reason for the high pH value and FA concentration in the reactor. It can be considered that selective inhibition of Nitrobacter can be causes of nitrite accumulation. The nitrite accumulation increased with increment of temperature at fixed alkalinity to $NH_4{^+}-N$ concentration ratio.

  • PDF

Evaluation of Operating Parameters of Reject Water Treatment System with Pilot-scale Biofilm Nitritation Plant at Field Condition (반류수처리를 위한 현장 pilot plant 생물막 아질산화 반응조에서 운전인자 평가)

  • Han, Jinhee;Kwon, Min;Han, Jonghun;Yun, Zuwhan;Nam, Haiuk;Ko, Joohyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.636-641
    • /
    • 2007
  • A pilot-scale biofilm nitiritation reactor was operated with the reject water from a large wastewater treatment plant. The effects of various operating parameters including pH, temperature, dissolved oxygen, solids and organic concentrations were examined. A stable nitritation was achieved at operating pH range of 7.3 to 8.8 with an alkalinity addition. Higher operating temperature of $35{\pm}0.7^{\circ}C$ achieved more stable nitritation compared to $30{\pm}0.2^{\circ}C$. It has been noticed that nitrite accumulation maintained with DO, solids and organic concentrations range of 0.8 to 3.9 mg/L, 3,400 to 11,000 mg/L, and 86 to 572 mg/L, respectively. It seems that the accumulation of nitrite was caused by both the inhibition of $NO_2{^-}$ oxidizers due to free ammonia and the maintenance of the high operating temperature of $35^{\circ}C$ which promote to accumulate the $NH_4{^+}$ oxidizers in the reactor. According to microbial community analysis of fluorescence in situ hybridization and INT-Dehydrogenase measurements, more nitrifiers were presented in attached form compared to suspended growth.

Anti-Oral Microbial Effect of Ethanol Extract of Angelica gigas Nakai

  • Soon-Jeong Jeong
    • Journal of dental hygiene science
    • /
    • v.24 no.1
    • /
    • pp.54-61
    • /
    • 2024
  • Background: The Korean name for Angelica gigas Nakai (AGN) is Cham-dang-gui, which grows naturally or is cultivated, and its dried roots are used in traditional herbal medicines. The AGN root exert various pharmacological effects. Despite the various pharmacological effects of the AGN root, there are no reports on its anti-oral microbial effects. The purpose of this study was to reveal the anti-oral microbial effect and the microbial and biochemical changes in oral microorganisms according to the concentration of the ethanol extract of AGN (EAGN) root, and to confirm the possibility of using EAGN as a plant-derived functional substance for controlling oral infectious microorganisms. Methods: Disk diffusion test, growth measurement, biofilm formation assay, and measurements of acid production and buffering capacity were performed to confirm the antibacterial effect of EAGN. Results: EAGN showed anti-oral bacterial effects against Streptococcus mutans and Aggregatibacter actinomycetemcomitans at all concentrations, with S. mutans showing a more susceptible effect at concentrations above 5.0 mg/ml and A. actinomycetemcomitans at 3.75 mg/ml. EAGN treatment significantly reduced A. actinomycetemcomitans growth at all concentrations tested. Biofilm formation was significantly reduced at concentrations above 3.75 mg/ml for S. mutans and 2.5 mg/ml for A. actinomycetemcomitans. Acid production in S. mutans and A. actinomycetemcomitans was significantly increased by treatment with EAGN, and the buffering capacities of S. mutans and A. actinomycetemcomitans increased from an EAGN concentration of 3.75 mg/ml and above. Conclusion: EAGN showed anti-oral bacterial effects against both S. mutans and A. actinomycetemcomitans at concentrations above 3.75 mg/ml, which were thought to be related to the inhibition of their growth and biofilm formation. Therefore, EAGN can be used as a safe functional substance derived from medicinal plants owing to its antibacterial effects against S. mutans and A. actinomycetemcomitans.

Treatment of produced water in a floating carrier bioreactor

  • Ezechi, Ezerie Henry;Sapari, Nasiman;Menyechi, Ezerie Jane;Ude, Clement M.;Olisa, Emmanuel
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.210-215
    • /
    • 2017
  • Produced water is the largest wastestream of oil and gas exploration. It consists of various organic and inorganic compounds that hinder its beneficial use. This study compared the treatment of produced water in a batch suspended and biofilm activated sludge process. The biofilm carrier material was made from Gardenia Carinata shell. COD, $NH_4{^+}-N$ and $NO_3-N$ removal was monitored in both the suspended (control) and floating carrier bioreactors. The results show a rapid reduction of produced water constituents in the floating carrier bioreactor. COD, $NH_4{^+}-N$ and $NO_3-N$ removal was in the range of 99%, 98% and 97% for the floating carrier bioreactor whereas it was 88%, 84% and 83% for the control bioreactor. The rapid reduction of COD, $NH_4{^+}-N$ and $NO_3-N$ clearly indicate that the floating carrier materials served as an attached growth medium for microorganisms, improved the breakdown of produced water constituents and reduced inhibition of microbial metabolic activities.

Proteomic and Morphologic Evidence for Taurine-5-Bromosalicylaldehyde Schiff Base as an Efficient Anti-Mycobacterial Drug

  • Ding, Wenyong;Zhang, Houli;Xu, Yuefei;Ma, Li;Zhang, Wenli
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1221-1229
    • /
    • 2019
  • Mycobacterium tuberculosis, a causative pathogen of tuberculosis (TB), still threatens human health worldwide. To find a novel drug to eradicate this pathogen, we tested taurine-5-bromosalicylaldehyde Schiff base (TBSSB) as an innovative anti-mycobacterial drug using Mycobacterium smegmatis as a surrogate model for M. tuberculosis. We investigated the antimicrobial activity of TBSSB against M. smegmatis by plotting growth curves, examined the effect of TBSSB on biofilm formation, observed morphological changes by scanning electron microscopy and transmission electron microscopy, and detected differentially expressed proteins using two-dimensional gel electrophoresis coupled with mass spectrometry. TBSSB inhibited mycobacterial growth and biofilm formation, altered cell ultrastructure and intracellular content, and inhibited cell division. Furthermore, M. smegmatis adapted itself to TBSSB inhibition by regulating the metabolic pathways and enzymatic activities of the identified proteins. NDMA-dependent methanol dehydrogenase, NAD(P)H nitroreductase, and amidohydrolase AmiB1 appear to be pivotal factors to regulate the M. smegmatis survival under TBSSB. Our dataset reinforced the idea that Schiff base-taurine compounds have the potential to be developed as novel anti-mycobacterial drugs.

Uncovering the Antibacterial Potential of a Peptide-Rich Extract of Edible Bird's Nest against Staphylococcus aureus

  • Thi-Phuong Nguyen;Tang Van Duong;Thai Quang Le;Khoa Thi Nguyen
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1680-1687
    • /
    • 2024
  • The diverse pharmacological properties of edible bird's nest (EBN) have been elucidated in recent years; however, investigations into its antibacterial effects are still limited. In the present study, we explored the antibacterial activity of a peptide-rich extract of EBN against Staphylococcus aureus, a notorious pathogen. The EBN extract (EEE) was prepared by soaking EBN in 80% ethanol for 2 days at 60℃. Biochemical analyses showed that peptides at the molecular weight range of 1.7-10 kDa were the major biochemical compounds in the EEE. The extract exhibited strong inhibition against S. aureus at a minimum inhibitory concentration (MIC) of 125 ㎍/ml and a minimum bactericidal concentration (MBC) of 250 ㎍/ml. This activity could be attributed to the impact of the extract on cell membrane integrity and potential, biofilm formation, and reactive oxidative species (ROS) production. Notably, the expression of biofilm- and ROS-associated genes, including intercellular adhesion A (icaA), icaB, icaC, icaD, and superoxide dismutase A (sodA), were deregulated in S. aureus upon the extract treatment. Our findings indicate a noteworthy pharmacological activity of EBN that could have potential application in the control of S. aureus.

THE EFFECT OF FERMENTED MILK ON VIABLE CELL COUNT AND BIOFILM FORMATION OF STREPTOCOCCUS MUTANS (유산균 발효유가 Streptococcus mutans의 생균수 및 biofilm 형성에 미치는 영향)

  • Shin, Hye-Sung;Kim, Seon-Mi;Choi, Nam-Ki;Yang, Kyu-Ho;Kang, Mi-Sun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.3
    • /
    • pp.358-366
    • /
    • 2009
  • Lactic acid bacteria worked positively on gastrointestinal tract and oral environment. So I selected commercial five fermented milks and milk, and then I evaluated their effect of growth inhibition and biofilm formation of cariogenic bacteria, Streptococcus mutans. And also calculated the acidity, buffering capacity, concentration of Ca and P ion and pH change of those drinks. After adding S. mutans to fermented milks viable cell count of S. mutans in milk was not statistically different but those in all fermented milks were decreased as concentration of fermented milk increased. When I measured the amount of formed biofilm in 10% fermented milks and milk with S. mutans and compared with those without S. mutans, the amount was decreased in Active GG and Bulgaris while being increased in Tootee, Ace and milk(P<0.05). The fermented milk with the lowest pH value was E5(3.48${\pm}$0.01), and the highest was Bulgaris(4.19${\pm}$0.02). pH change of the fermented milks and milk with S. mutans was measured. The highest acid producing fermented milk was Bulgaris, and followed by Active GG, Ace, Tootee, E5, Milk. These results indicated that fermented milks had caries activity due to the value of initial acidity and acid producing capacity. But, concentrated fermented milks had the inhibitory effect against S. mutans, and also had high volume of Ca and P ion that protected teeth. So I suggest that they have positive effect on teeth.

  • PDF

Inhibition of Candida albicans Biofilm Formation by Coptidis chinensis through Damaging the Integrity of Cell Membrane (세포막손상 유발로 인한 황련의 캔디다 바이오필름 형성 억제)

  • Kim, Younhee
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.17-23
    • /
    • 2013
  • Candida biofilms are organized microbial communities growing on the surfaces of host tissues or indwelling medical devices, and the biofilms show enhanced resistance against the conventional antifungal agents. The roots of Coptidis chinensis have been widely used for medicinal purposes in East Asia. The present study was aimed to assess the effect of C. chinensis aqueous extract upon preformed biofilms of 10 clinical Candida albicans isolates and the antifungal activities which contribute to inhibit the C. albicans biofilm formation. Its effect on preformed biofilms was judged using XTT [2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide)] reduction assay, and metabolic activity of all tested strains was reduced significantly ($57.3{\pm}14.7%$) at $98{\mu}g/ml$ of the C. chinensis extract. The extract damaged the cell membrane of C. albicans which was analyzed by fluorescein diacetate and propidium iodide staining. The anticandidal activity was fungicidal, and the extract obstructed the adhesion of C. albicans biofilms to polystyrene surfaces, arrested C. albicans cells at $G_o/G_1$ as well, and reduced the growth of biofilms or budding yeasts finally. The data suggest that C. chinensis has multiple antifungal effects on target fungi resulting in preventing the formation of biofilms. Therefore, C. chinensis holds great promise for exploring antifungal agents from natural products in treating and eliminating biofilm-associated Candida infection.