• Title/Summary/Keyword: biofilm control

Search Result 173, Processing Time 0.025 seconds

Recent Advances of Therapeutic Targets for the Treatment of Periodontal Disease

  • Kim, Woo Jin;Soh, Yunjo;Heo, Seok-Mo
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.263-267
    • /
    • 2021
  • Periodontal disease is primarily associated with bacterial infection such as dental plaque. Dental plaque, an oral biofilm harboring a complex microbial community, can cause various inflammatory reactions in periodontal tissue. In many cases, the local bacterial invasion and host-mediated immune responses lead to severe alveolar bone destruction. To date, plaque control, non-surgical, and surgical interventions have been the conventional periodontal treatment modalities. Although adjuvant therapies including antibiotics or supplements have accompanied these procedures, their usage has been limited by antibiotic resistance, as well as their partial effectiveness. Therefore, new strategies are needed to control local inflammation in the periodontium and host immune responses. In recent years, target molecules that modulate microbial signaling mechanisms, host inflammatory substances, and bone immune responses have received considerable attention by researchers. In this review, we introduce three approaches that suggest a way forward for the development of new treatments for periodontal disease; (1) quorum quenching using quorum sensing inhibitors, (2) inflammasome targeting, and (3) use of FDA-approved anabolic agents, including Teriparatide and sclerostin antibody.

Antibacterial and Antibiofilm Effect of Cell-Free Supernatant of Lactobacillus brevis KCCM 202399 Isolated from Korean Fermented Food against Streptococcus mutans KCTC 5458

  • Kim, Jong Ha;Jang, Hye Ji;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.56-63
    • /
    • 2022
  • This study aims to determine the antibiofilm effect of cell-free supernatant (CFS) of Lactobacillus brevis strains against Streptococcus mutans strains. To study the antibiofilm mechanism against S. mutans strains, antibacterial effects, cell surface properties (auto-aggregation and cell surface hydrophobicity), exopolysaccharide (EPS) production, and morphological changes were examined. The antibiofilm effect of L. brevis KCCM 202399 CFS as morphological changes were evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), compared with the control treatment. Among the L. brevis strains, L. brevis KCCM 202399 showed the highest antibiofilm effect on S. mutans KCTC 5458. The antibacterial effect of L. brevis KCCM 202399 against S. mutans KCTC 5458 was investigated using the deferred method (16.00 mm). The minimum inhibitory concentration of L. brevis KCCM 202399 against S. mutans KCTC 5458 was 25.00%. Compared with the control treatment, L. brevis KCCM 202399 CFS inhibited the bacterial adhesion of S. mutans KCTC 5458 by decreasing auto-aggregation, cell surface hydrophobicity, and EPS production (45.91%, 40.51%, and 67.44%, respectively). L. brevis KCCM 202399 CFS inhibited and eradicated the S. mutans KCTC 5458 biofilm. Therefore, these results suggest that L. brevis KCCM 202399 CFS may be used to develop oral health in the probiotic industry.

Proteomic and Phenotypic Analyses of a Putative YggS Family Pyridoxal Phosphate-Dependent Enzyme in Acidovorax citrulli

  • Lynn Heo;Yongmin Cho;Junhyeok Choi;Jeongwook Lee;Yoobin Han;Sang-Wook Han
    • The Plant Pathology Journal
    • /
    • v.39 no.3
    • /
    • pp.235-244
    • /
    • 2023
  • Acidovorax citrulli (Ac) is a phytopathogenic bacterium that causes bacterial fruit blotch (BFB) in cucurbit crops, including watermelon. However, there are no effective methods to control this disease. YggS family pyridoxal phosphate-dependent enzyme acts as a coenzyme in all transamination reactions, but its function in Ac is poorly understood. Therefore, this study uses proteomic and phenotypic analyses to characterize the functions. The Ac strain lacking the YggS family pyridoxal phosphate-dependent enzyme, AcΔyppAc(EV), virulence was wholly eradicated in geminated seed inoculation and leaf infiltration. AcΔyppAc(EV) propagation was inhibited when exposed to L-homoserine but not pyridoxine. Wild-type and mutant growth were comparable in the liquid media but not in the solid media in the minimal condition. The comparative proteomic analysis revealed that YppAc is primarily involved in cell motility and wall/membrane/envelop biogenesis. In addition, AcΔyppAc(EV) reduced biofilm formation and twitching halo production, indicating that YppAc is involved in various cellular mechanisms and possesses pleiotropic effects. Therefore, this identified protein is a potential target for developing an efficient anti-virulence reagent to control BFB.

Biological Control Activity of Two Isolates of Pseudomonas fluorescens against Rice Sheath Blight

  • Choi Gyung-Ja;Kim Jin-Cheol;Park Eun-Jin;Choi Yong-Ho;Jang Kyoung-Soo;Lim He-Kyoung;Cho Kwang-Yun;Lee Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.289-294
    • /
    • 2006
  • Two isolates of mucous bacteria, mc75 and pc78, were isolated from fungal culture plate as culture contaminants with an interesting swarming motility. Both isolates were identified as Pseudomonas fluorescens based on microscopy, biochemical analysis, Biolog test and DNA sequence analysis of the 16S rRNA gene. Both strains have the exactly the same 16S rRNA gene sequences, and yet their biological control activity were not identical each other. In vitro analysis of antagonistic activity of two isolates against several plant pathogenic fungi indicated that both produced diffusible and volatile antifungal compounds of unknown identities. Treatment of the bacterial culture of P. fluorescens pc78 and its culture filtrate exhibited a strong biological control activity against rice sheath blight in vivo among six plant diseases tested. More effective disease control activity was obtained from treatment of bacterial culture than that of culture filtrate. Therefore, in addition to antifungal compound and siderophore production, other traits such as biofilm formation and swarming motility on plant surface may contribute to the biological control activity of P.fluorescens pc78 and mc75.

Effects of an electric toothbrush combined with 3-color light-emitting diodes on antiplaque and bleeding control: a randomized controlled study

  • Kwon, Chakyoung;Lee, Jae-Mok;Suh, Jo-Young;Seo, Seung-Jun;Lee, Youngkyun;Kim, Yong-Gun
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.4
    • /
    • pp.251-259
    • /
    • 2020
  • Purpose: This randomized controlled study aimed to evaluate the effects of an electric toothbrush with 3 colors of light-emitting diodes (LEDs) on antiplaque and bleeding control. Methods: This randomized, placebo-controlled, double-blinded, parallel-group clinical trial included 50 healthy adults with gingivitis, who were randomly assigned to 2 groups. The experimental group used electric toothbrushes with 3 colors of LEDs and the control group used the same electric toothbrush as the experimental group, but with LED sources with one-hundredth of the strength. The subjects used the electric toothbrush 3 times a day for 4 minutes each time. As clinical indices, bleeding on marginal probing (BOMP), the Löe-Silness gingival index (GI), and the Turesky-Quigley-Hein plaque index (QHI) were assessed at baseline, at 3 weeks, and at 6 weeks. Results: There were significant decreases in all clinical indices (BOMP, GI, QHI) in both the experimental and control groups compared to baseline at 3 weeks and at 6 weeks. In a comparison between the experimental and control groups, no statistically significant differences were observed for any clinical indices at 3 weeks (P>0.05). However, at 6 weeks, statistically significant differences were observed between the experimental and control groups in BOMP and GI, which are indicators of gingival inflammation (P<0.05). Conclusions: This study demonstrated that an electric toothbrush combined with 3-color LEDs reduced gingival bleeding and inflammation after 6 weeks.

Surface Roughness of Dentin and Formation of Early Cariogenic Biofilm after Silver Diamine Fluoride and Potassium Iodide Application (Silver Diamine Fluoride와 요오드화 칼륨 도포 후 상아질 표면 거칠기와 초기 우식원성 세균막 형성)

  • Haeni, Kim;Howon, Park;Juhyun, Lee;Siyoung, Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.140-148
    • /
    • 2022
  • This study aimed to evaluate the effect of silver diamine fluoride (SDF) and potassium iodide (KI) on the formation of cariogenic biofilm and surface roughness in vitro. A total of 48 bovine dentin specimens with artificially induced caries were prepared and divided into 3 groups of 16: untreated control, SDF-treated, and SDF-treated followed by KI (SDFKI). Ten specimens from each group were used to observe microbial adhesion. Multispecies cariogenic biofilms including Streptococcus mutans, Lactobacillus casei, and Candida albicans were cultured on the specimens. Microbes were cultured for 24 hours, and the colony-forming unit was calculated. The remaining specimens were observed by atomic force microscope and scanning electron microscope (SEM). The number of bacteria was significantly lower in the SDF and SDFKI groups. KI did not inhibit the antibacterial activity of SDF significantly. SEM images showed particles generated after SDF and SDFKI application were deposited on the dentin, but there was no significant difference in surface roughness between the 3 groups. This study confirmed that SDF and SDFKI application did not have a significant effect on the surface roughness of dentin, but effectively inhibited the formation of the early cariogenic bacterial film after 24 hours compared to the control.

Chemical cleansing as an adjunct to subgingival instrumentation with ultrasonic and hand devices in deep periodontal pockets: a randomized controlled study

  • Zafar, Fahad;Romano, Federica;Citterio, Filippo;Ferrarotti, Francesco;Dellavia, Claudia;Chang, Moontaek;Aimetti, Mario
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.4
    • /
    • pp.276-284
    • /
    • 2021
  • Purpose: The aim of this randomized clinical trial was to assess whether chemical cleansing using a sulfonic/sulfuric acid gel solution (HBX) as an adjunct to scaling and root planing (SRP) resulted in a decrease in residual plaque and calculus in deep periodontal pockets compared to SRP alone. Methods: Fifty-six patients with 56 hopeless posterior teeth, scheduled for extraction due to severe periodontitis, were enrolled in this study. Each tooth was randomly assigned to 1 of the 2 experimental procedures. The test teeth were subjected to the irrigation of the subgingival area with HBX for 2 minutes, followed by SRP with hand and ultrasonic instruments for 14 minutes, and then extracted. The control teeth received only mechanical instrumentation before extraction. Residual biofilm was evaluated on photographs and measured as total area and percentage of root surface covered by remaining plaque (RP) or calculus (RC) after treatment. Results: The initial pocket depth (PD) and total subgingival root surface area were similar between the 2 treatment groups. After treatment, the total subgingival root area covered by RP and RC was statistically significantly larger (P<0.001) in the control group than in the test group. The test teeth showed a lower percentage of RP, but a higher percentage of RC than the control teeth (both P<0.001). Complete calculus removal was achieved in 42% of the control teeth surfaces and in 25% of the test teeth surfaces for a PD of 4 mm. Conclusions: The additional chemical cleansing with HBX resulted in a statistically significant improvement in bacterial plaque removal during SRP of deep pockets, but it was not effective in reducing calculus deposits.

Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin

  • Kim, Ji-Sun;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.1
    • /
    • pp.36-42
    • /
    • 2013
  • Objectives: This study evaluated the antibacterial effect and mechanical properties of composite resins ($L_{CR}$, $M_{CR}$, $H_{CR}$) incorporating chitosan with three different molecular weights (L, Low; M, Medium; H, High). Materials and Methods: Streptococcus (S). mutans 100 mL and each chitosan powder were inoculated in sterilized 10 mL Brain-Heart Infusion (BHI) solution, and was centrifuged for 12 hr. Absorbance of the supernatent was measured at $OD_{660}$ to estimate the antibacterial activities of chitosan. After S. mutans was inoculated in the disc shaped chitosan-containing composite resins, the disc was cleansed with BHI and diluted with serial dilution method. S. mutans was spread on Mitis-salivarius bacitracin agar. After then, colony forming unit (CFU) was measured to verify the inhibitory effect on S. mutans biofilm. To ascertain the effect on the mechanical properties of composite resin, 3-point bending and Vickers hardness tests were done after 1 and 3 wk water storage, respectively. Using 2-way analysis of variance (ANOVA) and Scheffe test, statistical analysis was done with 95% significance level. Results: All chitosan powder showed inhibition effect against S. mutans. CFU number in chitosan-containing composite resins was smaller than that of control resin without chitosan. The chitosan containing composite resins did not show any significant difference in flexural strength and Vickers hardness in comparison with the control resin. However, the composite resin, $M_{CR}$ showed a slightly decreased flexural strength and the maximum load than those of control and the other composite resins $H_{CR}$ and $L_{CR}$. Conclusions: $L_{CR}$ and $H_{CR}$ would be recommended as a feasible antibacterial restorative due to its antibacterial nature and mechanical properties.

Assessment of MMP-1, MMP-8 and TIMP-2 in experimental periodontitis treated with kaempferol

  • Balli, Umut;Cetinkaya, Burcu Ozkan;Keles, Gonca Cayir;Keles, Zeynep Pinar;Guler, Sevki;Sogut, Mehtap Unlu;Erisgin, Zuleyha
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.2
    • /
    • pp.84-95
    • /
    • 2016
  • Purpose: The objective of this study was to investigate the effect of a dietary flavonoid, kaempferol, which has been shown to possess antiallergic, anti-inflammatory, anticarcinogenic, and antioxidant activities on the periodontium by histomorphometric analysis and on gingival tissue matrix metalloproteinase-1 (MMP-1), MMP-8, and tissue inhibitor of metalloproteinase-2 (TIMP-2) by biochemical analysis of rats after experimental periodontitis induction. Methods: Sixty Wistar rats were randomly divided into six groups of ten rats each, and silk ligatures were placed around the cervical area of the mandibular first molars for 15 days, except in the healthy control rats. In the experimental periodontitis groups, systemic kaempferol (10 mg/kg/2d) and saline were administered by oral gavage at two different periods (with and without the presence of dental biofilm) to all rats except for the ten non-medicated rats. Alveolar bone area, alveolar bone level, and attachment level were determined by histomorphometric analysis, and gingival tissue levels of MMP-1, MMP-8, and TIMP-2 were detected by biochemical analysis. Results: Significantly greater bone area and significantly less alveolar bone and attachment loss were observed in the kaempferol application groups compared to the control groups (P<0.05). In addition, gingival tissue MMP-1 and -8 levels were significantly lower in the kaempferol application groups compared to the control groups and the periodontitis group (P<0.001). There were no statistically significant differences in TIMP-2 levels between the kaempferol and saline application groups (P>0.05). Conclusions: Kaempferol application may be useful in decreasing alveolar bone resorption, attachment loss, and MMP-1 and -8 production in experimental periodontitis.

Antibacterial effect of urushiol on E. faecalis as a root canal irrigant

  • Kim, Sang-Wan;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.1
    • /
    • pp.54-59
    • /
    • 2017
  • Objectives: The purpose of this study was to compare the antibacterial activity of urushiol against Enterococcus faecalis (E. faecalis) to that of NaOCl. Materials and Methods: The canals of thirty two single rooted human teeth were instrumented with Ni-Ti files (ProTaper Next X1, X2, X3, Dentsply). A pure culture of E. faecalis ATCC 19433 was prepared in sterile brain heart infusion (BHI) broth. The teeth were submerged in the suspension of E. faecalis and were incubated at $37^{\circ}C$ for 7 days to allow biofilm formation. The teeth were randomly divided into three experimental groups according to the irrigant used, and a negative control group where no irrigant was used (n = 8). Group 1 used physiologic normal saline, group 2 used 6% NaOCl, and group 3 used 10 wt% urushiol solution. After canal irrigation, each sample was collected by the sequential placement of 2 sterile paper points (ProTaper NEXT paper points, size X3, Dentsply). Ten-fold serial dilutions on each vials, and 100 µL were cultured on a BHI agar plate for 8 hours, and colony forming unit (CFU) analysis was done. The data were statistically analyzed using Kruskal-Wallis and Mann-whitney U tests. Results: Saline group exhibited no difference in the CFU counts with control group, while NaOCl and urushiol groups showed significantly less CFU counts than saline and control groups (p < 0.05). Conclusions: The result of this study suggests 10% urushiol and 6% NaOCl solution had powerful antibacterial activity against E. faecalis when they were used as root canal irrigants.