• Title/Summary/Keyword: biodegradation,

Search Result 1,045, Processing Time 0.03 seconds

Improved Degradation of 4-Chlorobiphencyl, 2,3-Dihydroxybiphenyl, and Catecholic Compounds by Recombinant Bacterial Strains

  • Kim, Ji-Young;Kim, Youngsoo;Lee, Kyoung;Kim, Chi-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.56-60
    • /
    • 2001
  • The pcbC gene encoding (4-chloro-)2,3-dihydroxybiphenyl dioxygenase was cloned from the genomic DNA of Pseudomonas sp. P20 using pKT230 to construct pKK1. A recombinant strain, E. coli KK1, was selected by transforming the pKK1 into E. coli XL1-Blue. Another recombinant strain, Pseudomonas sp. DJP-120, was obtained by transferring the pKK1 of E. coli KK1 into Pseudomonas sp. DJ-12 by conjugation. Both recombinant strains showed a 23.7 to 26.5 fold increase in the degradation activity to 2,3-dihydroxybiphenyl compared with that of the natural isolate, Pseudomonas sp. DJ-12. The DJP-120 strain showed 24.5, 3.5, and 4.8 fold higher degradation activities to 4-chlorobiphenyl, catechol, and 3-methylcatechol than DJ-12 strain, respectively. The pKK1 plasmid of both strains and their ability to degrade 2,3-dihydroxybiphenyl were stable even after about 1,200 generations.

  • PDF

Effect of Rhamnolipids on Degradation of Anthracene by Two Newly Isolated Strains, Sphingomonas sp. 12A and Pseudomonas sp. 12B

  • Cui, Chang-Zheng;Zeng, Chi;Wan, Xia;Chen, Dong;Zhang, Jia-Yao;Shen, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.63-66
    • /
    • 2008
  • Anthracene is a PAH that is not readily degraded, plus its degradation mechanism is still not clear. Thus, two strains of anthracene-degrading bacteria were isolated from long-term petroleum-polluted soil and identified as Sphingomonas sp. 12A and Pseudomonas sp. 12B by a 16S rRNA sequence analysis. To further enhance the anthracene-degrading ability of the two strains, the biosurfactants produced by Pseudomonas aeruginosa $W_3$ were used, which were characterized as rhamnolipids. It was found that these rhamnolipids dramatically increased the solubility of anthracene, and a reverse-phase HPLC assay showed that the anthracene degradation percentage after 18 days with Pseudomonas sp. 12B was significantly enhanced from 34% to 52%. Interestingly, their effect on the degradation by Sphingomonas sp. 12A was much less, from 35% to 39%. Further study revealed that Sphingomonas sp. 12A also degraded the rhamnolipids, which may have hampered the effect of the rhamnolipids on the anthracene degradation.

Growth Response of Avena sativa in Amino-Acids-Rich Soils Converted from Phenol-Contaminated Soils by Corynebacterium glutamicum

  • Lee, Soo-Youn;Kim, Bit-Na;Choi, Yong-Woo;Yoo, Kye-Sang;Kim, Yang-Hoon;Min, Ji-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.541-546
    • /
    • 2012
  • The biodegradation of phenol in laboratory-contaminated soil was investigated using the Gram-positive soil bacterium Corynebacterium glutamicum. This study showed that the phenol degradation caused by C. glutamicum was greatly enhanced by the addition of 1% yeast extract. From the toxicity test using Daphnia magna, the soil did not exhibit any hazardous effects after the phenol was removed using C. glutamicum. Additionally, the treatment of the phenol-contaminated soils with C. glutamicum increased various soil amino acid compositions, such as glycine, threonine, isoleucine, alanine, valine, leucine, tyrosine, and phenylalanine. This phenomenon induced an increase in the seed germination rate and the root elongation of Avena sativa (oat). This probably reflects that increased soil amino acid composition due to C. glutamicum treatment strengthens the plant roots. Therefore, the phenol-contaminated soil was effectively converted through increased soil amino acid composition, and additionally, the phenol in the soil environment was biodegraded by C. glutamicum.

Water Absorption Properties and Biodegradability of Lignin/PVA Nanofibrous Webs (리그닌/PVA 나노섬유 웹의 수분 특성 및 생분해성 평가)

  • Song, Youjung;Lee, Eunsil;Lee, Seungsin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.3
    • /
    • pp.517-526
    • /
    • 2017
  • The biodegradation and water absorption properties of lignin/poly(vinyl alcohol) (PVA) nanofibrous webs are investigated. Lignin/PVA nanofibrous webs containing 0, 50, and 85wt% of lignin were prepared via an electrospinning process to observe the effect of the lignin concentration on the biodegradability and water absorption properties of lignin/PVA nanofibrous webs. The morphology of the materials was examined by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). To understand the wetting behavior and hydrophilic nature of the electrospun lignin/PVA nanofibrous webs, the water absorbency, contact angle, and water uptake were examined. The enzymatic degradation of lignin/PVA nanofibrous webs was investigated using laccase by measuring total organic carbon (TOC) concentration over a course of 50 days. Water drops were absorbed immediately into all of the specimens. The water uptake of lignin/PVA nanofibrous webs increased as the amount of PVA in the lignin/PVA hybrid webs increased. The enzymatic degradation experiment indicated that the inherent biodegradability of lignin was retained after its transformation into nanofibers. Our findings imply that blending these two types of polymers is promising because it can lead to the development of a new range of multifunctional materials such as antimicrobial absorbent nanotextiles based on sustainable biopolymers.

Synthesis and Characterization of Artificial Skin based on Polypeptides (Polypeptide계 인공 피부의 합성과 특성)

  • Kim, Seon-Jeong;Min, Dong-Seon;Kim, Gye-Yong
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.87-92
    • /
    • 1987
  • In order to evaluate the artificial skin for burn would covering materials, copoly(N. carbobenzoxy-L-Iysine-L-leucine)s were prepared by Ipolymerization of N - carbobenzoxy-L- I sine anhydride and L-leucine anhydride in homogeneous solvents using triethylamine as an initiator. The synthetic polypeptides and the oxter type polyurethane(PV)of medical grade were used as the sheet type membranes were prepared ; monolayer membrances were composed of only the polypeptides, bilayer membranes and blend membranes were controlled by composition of the polypeptides and PU. Test of the swelling degree, mechanical tensile strength, elongation, oxygen permeability, water-vapor loss and In vitro degradation treated by pretense TV of samples of artificial skin were measured by adequate methods so as to mechanical, physincal characterization and biodegradation. As a result, all the values of samples were found to be similar to desired value of skin which was nature. The Artificial skin based on polypeptides can be considered as ideal burn wound covering materials.

  • PDF

Sequestration of Organic Pollutants in the Environments: Implications on Bioavailability and Bioremediation

  • Nam, Kyoungphile
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.107-118
    • /
    • 2000
  • For the last several decades, the fate of organic pollutants has been extensively studied in natural environments with emphasis on sorption and desorption phenomena. Although the mechanisms involved are not clear yet there is a consensus about the existence of hysteresis in the sorption and desorption of organic pollutants. Furthermore, it is found that hysteresis is the outcome of slow nonequilibrium sorption of organic pollutants, which results in the formation of desorption-resistant fractions of the pollutants. Desorption-resistant fractions may increase as a function of the residence time of the pollutants in the environments. Field monitoring data show a slow but continuous decline of chemicals applied to soil, followed by little or no subsequent disappearance. One plausible explanation for such resistance to biodegradation, desorption, or extraction can be attributed the gradual movement of organic pollutants to less accessible remote sites inside the matrix with time. This phenomenon has been termed sequestration or aging. The fact that some pollutants are sequestered in soil with time may have a great impact on bioremediation and risk assessment, Some portion of the resistant pollutants may still be present in the environments after bioremediation. It requires vigorous means to completely remove the aged portion that may not be further bioavailable. However, precaution should be taken since aging is not always evident. Aging seems to be soil and chemical specific.

  • PDF

Comparison of Biodegradation of pyrene between Rhizosphere Soil and Non-rhizosphere Soil (Rhizosphere 토양과 Non-rhizosphere 토양에서 Pyrene의 분해속도 비교)

  • 김상채;이의상;서성규
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.71-78
    • /
    • 1998
  • Pyrene is a common petroleum contaminant. This compound is recalcitrant to biological degradation and persists long in contaminated environments. A microcosm experiment was conducted to investigate the degradation rate of pyrene in three different of soil : rhizosphere soil ; non-rhizosphere soil ; and sterilized soil. The degradation rate followed the order of rhizosphere soil)non-rhizosphere soil)sterilized soil. And the rate did not change significantly when organic acids commonly found in the rhizosphere were added to each soil but it seemed to be well related to the increase of the number of microorganisms. Overall, it appears that pyrene is degraded faster in the rhizosphere soil which has the higher microorganism density.

  • PDF

Influence factors and Efficiencies Characteristics for Treatment of Wastewater Containing Phenol (Phenol 함유폐수의 처리를 위한 영향인자와 성능특성)

  • Kang, Sun-Tae;Kim, Jeong-Mog
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.4
    • /
    • pp.119-126
    • /
    • 1996
  • Influence factors and efficiency characteristics for treatment of wastewater containing phenol were studied with using Pseudomonas sp. B3. It took 130 hours to remove phenol, when only activated sludge of terminal disposal palnt of sewage was innoculated in batch culture, but it was required just 36 hours, when bacteria degrading phenol and activated sludge were simultaneously innoculated. If only phenol an carbon source was used, it necessary 36 hours for biodegradation of phenol, while glucose was added to medium, it took 73 hours. It was revealed as excellent effluent and SVI, when the F/M ratio, COD and phenol concentration were 53mg/l and 1.2mg/l, respectively, and optimum F/M ratio was revealed 0.31. The reactor were seriously shocked as reducing hydraulic retention time at constant phenol concentration more than increasing phenol concentration at constant hydraulic retention time, when volumetric loading rate was increased to $0.8kg\;phenol/m^3{\codt}d$ from $1.6kg\;phenol/m^3{\codt}d$. And also the effluent phenol concentration was 34mg/l after starting 12 hours of shocking and reactor was recovered as steady state after 65 hours of changing in the former test. Although the effluent phenol concentration was maximum value with 12mg/l after starting 20 hours of shocking and reactor was recovered as steady state after 54 hours of changing in the later test.

  • PDF

Microbial Degradation of Hydrocarbons in the Waste Oil (미생물에 의한 폐기름 탄화수소의 분해)

  • 정재갑;임운기;신혜자
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.84-91
    • /
    • 1999
  • Sediment samples from the waste-oil spilled sites were screened for microorganisms able to degrade the components of crude oil, and 3 strains that could degrade were obtained. The isolated 3 strains (Xl, X2 and X3) metabolized naphthalene and 2-methyl naphthalene about 80$\%$ as well as hexane and hexadecane about 60~70$\%$ as a sole carbon source in 7 days. The degradation of the waste oil was about 60$\%$. The addition of synthetic surfactant, Triton-X 100 or Tween 20 slightly inhibited the growth of the populations. Xl and X2 were gram negative and X3 was gram positive. Xl and X3 showed ampicillin resistancy. Xl strain having 30kb plasmid has been selected for genetic study. The plasmid was isolated and transformed into E. coli. showing the possibility of the genetically engineered degrader.

  • PDF

Stabilization of Industrial Wastes Landfill using Lab-lysimeter (모형매립조를 이용한 산업폐기물 매립지의 안정화 조사 기초 연구)

  • 박동일;최석규;홍종순;장인용
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.9-18
    • /
    • 1998
  • An experimental research was conducted to establish primary data for the stabilization assessment of industrial wastes landfill with analysis of waste components and investigation of leachate and gas generation, using three sets of lysimeter as experimental apparatus. Comparing results of lysimeter from data of landfill, it is suggested that lysimeter of this study can be used to accomplish the stabilization assessment of the real landfill site. Moisture content was lower as landfill period was older and combustible component was the highest in lysimeter C. The C/N ratio of waste was 7.4~14.4 and, with the elemental analysis, the theoretical gas generation rate based on the modified Buswell equation was 0.47~0.49 $m^3/kg-dry$ waste in lysimeter C. Considering the C/N ratio of leachate, it is concluded that the addition of carbon source is needed to biodegrade leachate hereafter. Gas generation rate($m^3/kg-dry$ waste) from lysimeter A, B and C was 0.0009, 0.014 and 0.0067, respectively, and different from each other according to the landfill period of wastes. The results in this study show that the biodegradation of microorganism for stabilization of landfill was inhibited and more activated in acidogenic step than in methanogenic of anaerobic degradation.

  • PDF