• 제목/요약/키워드: biodegradable polymer grafting

검색결과 9건 처리시간 0.019초

Uniform Grafting of Poly(1,5-dioxepan-2-one) by Surface-Initiated, Ring-Opening Polymerization

  • Yoon Kuk-Ro;Yoon Ok-Ja;Chi Young-Shik;Choi Insung-S.
    • Macromolecular Research
    • /
    • 제14권2호
    • /
    • pp.205-208
    • /
    • 2006
  • A polymeric film of a biodegradable poly(1,5-dioxepan-2-one) (PDXO) was formed on a gold surface by a combination of the formation of self-assembled monolayers (SAMs) presenting hydroxyl groups and the surface-initiated, ring-opening polymerization (SI-ROP) of 1,5-dioxepan-2-one (DXO). The SI-ROP of DXO was achieved by heating a mixture of $Sn(Oct)_2$, DXO, and the SAM-coated substrate in anhydrous toluene at $55^{\circ}C$. The resulting PDXO film was quite uniform. The PDXO film was characterized by polarized infrared external reflectance spectroscopy, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, atomic force microscopy, ellipsometry, and contact angle goniometry.

Surface Characteristics and Fibroblast Adhesion Behavior of RGD-Immobilized Biodegradable PLLA Films

  • Jung Hyun Jung;Ahn Kwang-Duk;Han Dong Keun;Ahn Dong-June
    • Macromolecular Research
    • /
    • 제13권5호
    • /
    • pp.446-452
    • /
    • 2005
  • The interactions between the surface of scaffolds and specific cells play an important role in tissue engineering applications. Some cell adhesive ligand peptides including Arg-Gly-Asp (RGD) have been grafted into polymeric scaffolds to improve specific cell attachment. In order to make cell adhesive scaffolds for tissue regeneration, biodegradable nonporous poly(L-lactic acid) (PLLA) films were prepared by using a solvent casting technique with chloroform. The hydrophobic PLLA films were surface-modified by Argon plasma treatment and in situ direct acrylic acid (AA) grafting to get hydrophilic PLLA-g-PAA. The obtained carboxylic groups of PLLA-g-PAA were coupled with the amine groups of Gly-Arg-Asp-Gly (GRDG, control) and GRGD as a ligand peptide to get PLLA-g-GRDG and PLLA-g-GRGD, respectively. The surface properties of the modified PLLA films were examined by various surface analyses. The surface structures of the PLLA films were confirmed by ATR-FTIR and ESCA, whereas the immobilized amounts of the ligand peptides were 138-145 pmol/$cm^2$. The PLLA surfaces were more hydrophilic after AA and/or RGD grafting but their surface morphologies showed still relatively smoothness. Fibroblast adhesion to the PLLA surfaces was improved in the order of PLLA control

플라스마 처리와 아크릴산 결합에 의한 PLLA 필름 및 지지체의 최적 친수화와 연골세포 점착 (Optimal Hydrophilization and Chondrocyte Adhesion of PLLA Films and Scaffolds by Plasma Treatment and Acrylic Acid Grafting)

  • 양희석;박귀덕;안광덕;김병수;한동근
    • 폴리머
    • /
    • 제30권2호
    • /
    • pp.168-174
    • /
    • 2006
  • 기존의 고분자 지지체의 소수성 및 세포친화성을 향상시켜 조직공학용 고기능성 지지체로 사용하기 위해서 여러 가지 플라스마 처리와 카복실기를 함유한 아크릴산(AA)을 직접 chamber내에서 in situ 그래프트 결합을 행하여 최적의 친수성을 갖는 생분해성 poly(L-lactic acid) (PLLA) 필름 및 이중기공 지지체를 제조하였다. 표면분석 결과, 표면개질된 비다공성 PLLA 필름 및 이중기공 지지체 표면은 미처리 PLLA control에 비해서 접촉각의 감소와 카복실기 함량의 증가로 친수성이 크게 증가하였다. 특히 여러 가지 표면개질 방법 중 Ar(아르곤)/AA 시료나 Ar+TP(열중합) 시료보다는 Ar 플라스마와 AA를 차례로 처리한 Ar+AA+AA 시료가 다른 시료들보다 접촉각이 낮고 카복실기가 많아서 최적의 표면 친수화 처리조건임을 알 수 있었으며, 표면개질된 PLLA 필름 및 이중기공 지지체의 경우 친수성이 증가함에 따라서 연골세포의 점착과 증식도 크게 향상되었다.

옥수수전분에 HEMA-PCL Macromer를 그래프팅시킨 공중합체의 합성 및 특성 (Synthesis and Characterization of HEMA-PCL Macromer Grafted onto Starch)

  • 공원석;진인주;김말남;김수현;윤진산
    • 폴리머
    • /
    • 제24권2호
    • /
    • pp.141-148
    • /
    • 2000
  • Polycaprolactone (PCL)을 base로 하는 효과적인 compost 필름을 만들기 위하여 옥수수전분을 블렌딩한 뒤 기계적 특성과 미생물에 의한 생분해도를 조사하였다. 비상용성을 보이는 옥수수전분/PCL 블렌드에 대한 상용화제로는 2-hydroxyethylmethacrylate (HEMA)-PCL macromer를 옥수수전분에 그래프팅시킨 공중합체를 사용하였는데 옥수수전분에 대한 HEMA의 그래프팅율이 가장 높은 것과 가장 낮은 것을 선택하여 일정한 조성의 $\varepsilon$-caprolactone에 그래프팅시킨 상용화제들의 상용화 효과를 비교하였다. 상용화제를 함유한 옥수수전분/PCL (50/50) 블렌드의 신장율이 상당히 증가하였으며 SEM 관찰 결과 이는 상용화제로 인해 옥수수전분 알갱이와 PCL 기질간의 계면 접착력이 증가하였기 때문으로 판단된다. 그러나 모듈러스와 인장강도는 상용화치 사용에도 불구하고 별다른 변화가 없었다.

  • PDF

Acrylic Acid-Grafted Hydrophilic Electrospun Nanofibrous Poly(L-lactic acid) Scaffold

  • Park, Kwi-Deok;Jung, Hyun-Jung;Kim, Jae-Jin;Ahn, Kwang-Duk;Han, Dong-Keun;Ju, Young-Min
    • Macromolecular Research
    • /
    • 제14권5호
    • /
    • pp.552-558
    • /
    • 2006
  • Biodegradable nanofibrous poly(L-lactic acid) (PLLA) scaffold was prepared by an electrospinning process for use in tissue regeneration. The nanofiber scaffold was treated with oxygen plasma and then simultaneously in situ grafted with hydrophilic acrylic acid (AA) to obtain PLLA-g-PAA. The fiber diameter, pore size, and porosity of the electrospun nanofibrous PLLA scaffold were estimated as $250\sim750nm,\;\sim30{\mu}m$, and 95%, respectively. The ultimate tensile strength was 1.7 MPa and the percent elongation at break was 120%. Although the physical and mechanical properties of the PLLA-g-PAA scaffold were comparable to those of the PLLA control, a significantly lower contact angle and significantly higher ratio of oxygen to carbon were notable on the PLLA-g-PAA surface. After the fibroblasts were cultured for up to 6 days, cell adhesion and proliferation were much improved on the nanofibrous PLLA-g-PAA scaffold than on either PLLA film or unmodified nanofibrous PLLA scaffold. The present work demonstrated that the applications of plasma treatment and hydrophilic AA grafting were effective to modify the surface of electrospun nanofibrous polymer scaffolds and that the altered surface characteristics significantly improved cell adhesion and proliferation.

전자선 조사 방법을 통한 생분해성고분자의 표면개질 특성 평가 (Surface Modification of Poly(L-lactide-co-ε-caprolactone) Nanofibers by Electron-beam Irradiation)

  • 김우진;신영민;박종석;권희정;노영창;임윤묵
    • 방사선산업학회지
    • /
    • 제5권4호
    • /
    • pp.365-370
    • /
    • 2011
  • Electrospun nanofibers prepared with synthetic biodegradable polymer have some limitations in regulating adhesion, proliferation, and spreading of cells because of their surface hydrophobicity and absence of cell-interaction. In this study, we functionalized the electrospun poly(L-lactide-co-${\varepsilon}$-caprolactone) (PLCL) nanofibers with acrylic acid (AAc) to modulate their surface hydrophilicity using electron-beam irradiation method and then measured grafting ratio of AAc, water contact angle, and ATR-FTIR of AAc-grafted nanofibers. A grafting ratio of AAc on the nanofibers was increased as irradiation dose and AAc concentration were increased. AAc-grafted nanofibers also have higher wettability than non-modified nanofibers. In conclusion, those surface-modified nanofibers may be an essential candidate to regulate cell attachment in tissue engineering applications.

Bone Morphogenic Protein-2 (BMP-2) Immobilized Biodegradable Scaffolds for Bone Tissue Engineering

  • Kim, Sung-Eun;Rha, Hyung-Kyun;Surendran, Sibin;Han, Chang-Whan;Lee, Sang-Cheon;Choi, Hyung-Woo;Choi, Yong-Woo;Lee, Kweon-Haeng;Rhie, Jong-Won;Ahn, Sang-Tae
    • Macromolecular Research
    • /
    • 제14권5호
    • /
    • pp.565-572
    • /
    • 2006
  • Recombinant human bone morphogenic protein-2 (rhBMP-2), which is known as one of the major local stimuli for osteogenic differentiation, was immobilized on the surface of hyaluronic acid (HA)-modified poly$(\varepsilon-caprolactone)$ (PCL) (HA-PCL) scaffolds to improve the attachment, proliferation, and differentiation of human bone marrow stem cells (hBMSCs) for bone tissue engineering. The rhBMP-2 proteins were directly immobilized onto the HA-modified PCL scaffolds by the chemical grafting the amine groups of proteins to carboxylic acid groups of HA. The amount of covalently bounded rhBMP-2 was measured to 1.6 pg/mg (rhBMP/HA-PCL scaffold) by using a sandwich enzyme-linked immunosorbant assay. The rhBMP-2 immobilized HA-modified-PCL scaffold exhibited the good colonization, by the newly differentiated osteoblasts, with a statistically significant increase of the rhBMP-2 release and alkaline phosphatase activity as compared with the control groups both PCL and HA-PCL scaffolds. We also found enhanced mineralization and elevated osteocalcin detection for the rhBMP-2 immobilized HA-PCL scaffolds, in vitro.

Preparation and Characterization of Temperature-Sensitive Poly(N-isopropylacrylamide)-g-Poly(L-lactide-co-$\varepsilon$-caprolactone) Nanofibers

  • Jeong, Sung-In;Lee, Young-Moo;Lee, Joo-Hyeon;Shin, Young-Min;Shin, Heung-Soo;Lim, Youn-Mook;Nho, Young-Chang
    • Macromolecular Research
    • /
    • 제16권2호
    • /
    • pp.139-148
    • /
    • 2008
  • Biodegradable and elastic poly(L-lactide-co-$\varepsilon$-caprolactone) (PLCL) was electrospun to prepare nanofibers, and N-isopropylacrylamide (NIPAAm) was then grafted onto their surfaces under aqueous conditions using $^{60}Co-{\gamma}$ irradiation. The graft yield increased with increasing irradiation dose from 5 to 10 kGy and the nanofibers showed a greater graft yield compared with the firms. SEM confirmed that the PLCL nanofibers maintained an interconnected pore structure after grafting with NIPAAm. However, overdoses of irradiation led to the excessive formation of homopolymer gels on the surface of thc PLCL nanofibers. The equilibrium swelling and deswelling ratio of the PNIPAAm-g-PLCL nanofibers (prepared with 10 kGy) was the highest among the samples, which was consistent with the graft yield results. The phase-separation characteristics of PNIPAAm in aqueous conditions conferred a unique temperature-responsive swelling behavior of PNIPAAm-g-PLCL nanofibers, showing the ability to absorb a large amount of water at < $32^{\circ}C$, and abrupt collapse when the temperature was increased to $40^{\circ}C$. In accordance with the temperature-dependent changes in swelling behavior, the release rate of indomethacin and FITC-BSA loaded in PNIPAAm-g-PLCL nanofibers by a diffusion-mediated process was regulated by the change in temperature. Both model drugs demonstrated greater release rate at $40^{\circ}C$ relative to that at $25^{\circ}C$. This approach of the temperature-controlled release of drugs from PNIPAAm-g-PLCL nanofibers using gamma-ray irradiation may be used to design drugs and protein delivery carriers in various biomedical applications.

표면개질된 생분해성 PLLA 필름 및 지지체의 연골세포와 조골세포 점착거동 (Adhesion Behavior of Chondrocyte and Osteoblast on Surface-Modified Biodegradable PLLA Films and Scaffolds)

  • 최지연;정현정;박방주;정윤기;박귀덕;한동근
    • 폴리머
    • /
    • 제36권3호
    • /
    • pp.357-363
    • /
    • 2012
  • Poly(L-lactic acid)(PLLA) 고분자 필름 및 지지체의 세포 친화성을 향상시키기 위하여 산소 플라즈마 처리후 카복실기를 함유한 아크릴산(AA)을 $in$ $situ$ 그래프트시켰다. Stimulated body fluid(SBF) 용액에 15일간 담지시킨 후 hydroxyapatite(HA)를 형성시킨 시료와 phosphate-buffered saline(PBS), fetal bovine serum(FBS), 식염수 및 세포 배양용 배지에 담지시킨 다음 PLLA 시료 표면의 접촉각을 비교해 본 결과, HA 표면이 가장 낮은 접촉각을 나타내었다. 또한 연골세포와 조골세포는 HA 표면 위에서 높은 점착과 성장을 보였으며 연골세포가 HA에 많은 영향을 받는 것으로 확인되었다. 조골세포의 경우 HA 표면 이외에도 FBS나 세포 배양배지에 담지된 표면에서도 높은 세포 증식을 보였다. 더욱이 필름형태보다는 3차원 입체 구조의 다공성 지지체에서 연골세포와 조골세포의 점착과 세포 증식이 향상됨도 확인할 수 있었다. 이러한 표면개질된 PLLA는 조직공학적으로 연골이나 뼈 재생을 위한 유-무기 하이브리드 지지체로 응용될 수 있을 것으로 기대된다.