• Title/Summary/Keyword: biocontrol activity

Search Result 297, Processing Time 0.027 seconds

Characterization of Antibiotic Substance Produced by Serratia plymuthica A21-4 and the Biological Control Activity against Pepper Phytophthora Blight

  • Shen, Shun-Shan;Piao, Feng-Zhi;Lee, Byong-Won;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.180-186
    • /
    • 2007
  • The biocontrol agent, Serratia plymuthica A21-4, has been developed for controlling pepper Phytophthora blight. Serratia plymuthica A21-4 strongly inhibits the mycelial growth, zoospore formation, and cyst germination of Phytophthora capsici in vitro. The application of a cell suspension of strain A21-4 to pepper plants in pot experiments and in greenhouse successfully controlled the disease. The bacteria produced a potent antifungal substance which was a key factor in the suppression of Phytophthora capsici. The most active chemical com-pound was isolated and purified by antifungal activity-guided fractionation. The chemical structure was identified as a chlorinated macrolide $(C_{23}H_{31}O_8Cl)$ by spectroscopic (UV, IR, MS, and NMR) data, and was named macrocyclic lactone A21-4. The active compound significantly inhibited the formation of zoosporangia and zoospore and germination of cyst of P. capsici at concentrations lower than $0.0625{\mu}g/ml$. The effective concentrations of the macrocyclic lactone A21-4 for $ED_{50}$ of mycelial growth inhibition were $0.25{\mu}g/ml,\;0.25{\mu}g/ml,\;0.30{\mu}g/ml \;and\;0.75{\mu}g/ml$ against P. capsici, Pythium ultimum, Sclerotinia sclerotiorum and Botrytis cinerea, respectively.

Bacillus sp. BS061 Suppresses Gray Mold and Powdery Mildew through the Secretion of Different Bioactive Substances

  • Kim, Young-Sook;Song, Ja-Gyeong;Lee, In-Kyoung;Yeo, Woon-Hyung;Yun, Bong-Sik
    • Mycobiology
    • /
    • v.41 no.3
    • /
    • pp.164-166
    • /
    • 2013
  • A Bacillus sp. BS061 significantly reduced disease incidence of gray mold and powdery mildew. To identify the active principle, the culture filtrate was partitioned between butanol and water. The antifungal activity against B. cinerea was evident in the butanol-soluble portion, and active substances were identified as cyclic lipopeptides, iturin A series, by nuclear magnetic resonance spectrometry (NMR) and mass analysis. Interestingly, antifungal activity against powdery mildew was observed in the water-soluble portion, suggesting that cyclic lipopeptides have no responsibility to suppress powdery mildew. This finding reveals that biocontrol agents of Bacillus origin suppress gray mold and powdery mildew through the secretion of different bioactive substances.

Identification and Characterization of Paenibacillus polymyxa DY5 with Antifungal Activity against Crop Pathogenic Fungi (작물병원 진균에 대하여 항균 활성을 보이는 Paenibacillus polymyxa DY5의 동정 및 특성)

  • Kim, Hyo-Yoon;Weon, Hang-Yeon;Kim, Wan-Gyu;Yoo, Kwan-Hee
    • The Korean Journal of Mycology
    • /
    • v.37 no.2
    • /
    • pp.181-188
    • /
    • 2009
  • A Gram-positive, rod-shaped bacteria named DY5 was isolated from a peat sample collected from Daeam mountain in Korea. The culture filtrate of the bacterial isolate DY5 showed a broad spectrum of antifungal activity on various crop pathogenic fungi such as Trichoderma koningii, Fusarium oxysporum, Colletotrichum gloeosporioides, Sclerotinia sclerotiorum, Rhizoctonia solani AG-1(IA) For the identification of the DY5, morphological, biochemical, API 50 CHB test, analysis of fatty acid and molecular phylogenetic approaches were performed. The DY5 was found to be a member of the genus Paenibacillus on the basis of morphological and biochemical analysis. The 16S rRNA of DY5 showed high similarity(98%) with Paenibacillus polymyxa. On the basis of these results, the DY5 was identified as Paenibacillus polymyxa. Antifungal substance of the DY5 would be mild alkaline proteine molecule. The DY5 seems to have a great potential to be a biocontrol agent against various crop pathogens.

Antagonistic Evaluation of Chromobacterium sp. JH7 for Biological Control of Ginseng Root Rot Caused by Cylindrocarpon destructans

  • Han, Joon-Hee;Park, Gi-Chang;Kim, Kyoung Su
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.370-378
    • /
    • 2017
  • Cylindrocarpon destructans is an ascomycete soil-borne pathogen that causes ginseng root rot. To identify effective biocontrol agents, we isolated several bacteria from ginseng cultivation soil and evaluated their antifungal activity. Among the isolated bacteria, one isolate (named JH7) was selected for its high antibiotic activity and was further examined for antagonism against fungal pathogens. Strain JH7 was identified as a Chromobacterium sp. using phylogenetic analysis based on 16S rRNA gene sequences. This strain was shown to produce antimicrobial molecules, including chitinases and proteases, but not cellulases. Additionally, the ability of JH7 to produce siderophore and solubilize insoluble phosphate supports its antagonistic and beneficial traits for plant growth. The JH7 strain suppressed the conidiation, conidial germination, and chlamydospore formation of C. destructans. Furthermore, the JH7 strain inhibited other plant pathogenic fungi. Thus, it provides a basis for developing a biocontrol agent for ginseng cultivation.

Molecular Identification and Evaluation of Indigenous Bacterial Isolates for Their Plant Growth Promoting and Biological Control Activities against Fusarium Wilt Pathogen of Tomato

  • Islam, Amanul;Kabir, Md. Shahinur;Khair, Abul
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.137-148
    • /
    • 2019
  • In search of an effective biological control agent against the tomato pathogen Fusarium oxysporum f. sp. lycopersici, rhizospheric soil samples were collected from eight agro-ecological zones of Bangladesh. Among the bacteria isolated from soil, 24 isolates were randomly selected and evaluated for their antagonistic activity against F. oxysporum f. sp. lycopersici. The two promising antagonistic isolates were identified as Brevundimonas olei and Bacillus methylotrophicus based on morphological, biochemical and molecular characteristics. These two isolates were evaluated for their biocontrol activity and growth promotion of two tomato cultivars (cv. Pusa Rubi and Ratan) for two consecutive years. Treatment of Pusa Rubi and Ratan seeds with B. olei prior to inoculation of pathogen caused 44.99% and 41.91% disease inhibition respectively compared to the untreated but pathogen-inoculated control plants. However, treatment of Pusa Rubi and Ratan seeds with B. methylotrophicus caused 24.99% and 39.20% disease inhibition respectively. Furthermore, both the isolates enhanced the growth of tomato plants. The study revealed that these indigenous bacterial isolates can be used as an effective biocontrol agent against Fusarium wilt of tomato.

A Genetically Engineered Pseudomonas fluorescens Strain Possesses Dual Activity Against Phytopathogenic Fungi and Insects

  • Lu, Wenwei;Zhang, Weiqiong;Bai, Yan;Fu, Yingying;Chen, Jun;Geng, Xiaolu;Wang, Yujing;Xiao, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.281-286
    • /
    • 2010
  • A Pseudomonas fluorescens strain was isolated and found to show antagonistic activity against phytopathogenic fungi and to possess a gene responsible for production of antibiotic 2,4-diacetylphloroglucinol. For the extension of biocontrol range, a gene for an Androetonus australis Hector insect toxin 1 (AaHIT1), one of the most known toxic insect-selective peptides, was designed and synthesized according to the preferred codon usage of Pseudomonas fluorescens, cloned, and transformed into the strain by pSUP106 vector, a broad-host-range plasmid. Bioassays indicated that the engineered strain was able to produce AaHIT1 with insecticidal activity, and at the same time retain the activity against plant pathogen. The experiments for nonplanted soil and rhizosphere colonization showed that, similar to the population of the wild-type strain, that of the engineered strain remained relatively constant in the first 10 days, and the subsequent 50 days, suggesting that AaHIT1 expression in the bacterial cell does not substantially impair its long-term colonization. It is first reported that a Pseudomonas fluorescens strain expressing an active scorpion neurotoxin has dual activity against phytopathogenic fungi and insects, making at attractive for agronomic applications.

Nematicidal and Plant Growth-Promoting Activity of Enterobacter asburiae HK169: Genome Analysis Provides Insight into Its Biological Activities

  • Oh, Mira;Han, Jae Woo;Lee, Chanhui;Choi, Gyung Ja;Kim, Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.968-975
    • /
    • 2018
  • In the course of screening for microbes with nematicidal activity, we found that Enterobacter asburiae HK169 displayed promising nematicidal activity against the root-knot nematode Meloidogyne incognita, along with plant growth-promoting properties. Soil drenching of a culture of HK169 reduced gall formation by 66% while also increasing root and shoot weights by 251% and 160%, respectively, compared with an untreated control. The cell-free culture filtrate of the HK169 culture killed all juveniles of M. incognita within 48 h. In addition, the nematicidal activity of the culture filtrate was dramatically reduced by a protease inhibitor, suggesting that proteolytic enzymes contribute to the nematicidal activity of HK169. In order to obtain genomic information about the HK169 isolate related to its nematicidal and plant growth-promoting activities, we sequenced and analyzed the whole genome of the HK169 isolate, and the resulting information provided evidence that the HK169 isolate has nematicidal and plant growth-promoting activities. Taken together, these observations enable the future application of E. asburiae HK169 as a biocontrol agent for nematode control and promote our understanding of the beneficial interactions between E. asburiae HK169 and plants.

Investigation of Siderophore production and Antifungal activity against Phytophthora capsici as related to Iron (III) nutrition by Lysobacter antibioticus HS124

  • Ko, Hyun-Sun;Tindwa, Hamisi;Jin, Rong De;Lee, Yong-Seong;Hong, Seong-Hyun;Hyun, Hae-Nam;Nam, Yi;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.650-656
    • /
    • 2011
  • Lysobacter antibioticus HS124 isolated from pepper rhizosphere soil produced catechol type siderophore. Purified siderophore by Diaion HP-20 and silica gel column chromatography showed several hydroxyl functional groups adjacent to benzene rings by analysis of $^1H$ NMR spectroscopy. The strain HS124 showed different activities to suppress Phytophthora capsici with different concentrations of exogenous Fe (III) in minimal medium where antifungal activity with $100{\mu}M$ Fe (III) was approximately 1.5 times higher than in absence of Fe (III). Bacterial population in this Fe (III)-amended medium was also highest with $8.9{\times}10^8\;CFU\;ml^{-1}$ which also corresponded to the strongest siderophore activity. When grown in rich medium (minimal medium with N, $P_2O_5K_2O$ and glucose), HS124 exhibited approximately 2 times stronger antifungal activity compared to minimal medium. In pot trials, treatments of bacterial culture grown in rich medium with (C1) or without (C2) $100{\mu}M$ Fe (III) exhibited a high protection of pepper plants from disease, compared to medium only with (M1) or without (M2) $100{\mu}M$ Fe (III). Especially, treatment C1 showed the best disease control effect of about 70 %. Thus, the strain HS124 should be recommended as a potential biocontrol agent against P. capsici in pepper.

토양길항세균 Bacillus sp. KL-3의 대사산물을 이용한 벼도열병균 Pyricularia oryzae의 생물학적방제

  • 김규영;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.396-402
    • /
    • 1997
  • Biocontrol of plant pathogens provides an alternative means of reducing the incidence of plant diseases without the negative aspects of chemical pesticides. Nowdays, as the resistant fungi about the chemical fungicides have revealed and the concern of environment has increased, the biological control of phytopathogenic fungi by the antagonistic microorganisms is very much indispensable. For the selection of strong antagonistic bacterium for biological control agent of rice leafblast and cucumber gray mold rot, the antifungal strain KL-3 strain was selected among 120 strains isolated from the rhizosphere soils. And the strain was identified to be a species of Bacillus subtilis or closely related strain. In several biochemical and in vitro antibiosis tests, antifungal substances of Bacillus sp. KL-3 were presumed heat stable, micromolecular antibiotic substances. In vivo test and vinyl house field test, the antifungal substances of Bacillus sp. KL-3 represented excellent biocontrol ability aganist Alternaria mali, Phyricularia oryzae, and Alternaria kikuchiana as well as broad spectrum of other fungi. In particular, Bacillus sp. KL-3 strain showed more predominant activity than some chemical fungicides against fungi shown to resist chemcal fungicides.

  • PDF

Biocontrol of Tomato Fusarium Wilt by a Novel Genotype of 2,4-Diacetylphloroglucinol-producing Pseudomonas sp. NJ134

  • Kang, Beom-Ryong
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.93-100
    • /
    • 2012
  • The rhizobacterium NJ134, showing strong $in$ $vitro$ antifungal activity against $Fusarium$ $oxysporum$, was isolated from field grown tomato plants and identified as $Pseudomonas$ sp. based on 16S ribosomal DNA sequence and biochemical analyses. The antifungal compound purified by gas chromatography-mass spectrometry, infrared, and nuclear magnetic resonance analyses from NJ134 cultures was polyketide 2,4-diacetylphloroglucinol (DAPG). Analysis of the sequence of part of one of the genes associated with DAPG synthesis, $phlD$, indicated that the DAPG producer NJ134 was a novel genotype or variant of existing genotype termed O that have been categorized based on isolates from Europe and North America. A greenhouse study indicated that about $10^8$ CFU/g of soil NJ134 culture application was required for effective biocontrol of Fusarium wilt in tomato. These results suggest that a new variant genotype of a DAPG-producing strain of $Pseudomonas$ has the potential to control Fusarium wilt under the low disease pressure conditions.