• 제목/요약/키워드: biochemical pathway

검색결과 159건 처리시간 0.026초

Antioxidant and Antimelanogenic Activities of Kimchi-Derived Limosilactobacillus fermentum JNU532 in B16F10 Melanoma Cells

  • Meng, Ziyao;Oh, Sejong
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.990-998
    • /
    • 2021
  • Melanin is a natural skin pigment produced by specialized cells called melanocytes via a multistage biochemical pathway known as melanogenesis, involving the oxidation and polymerization of tyrosine. Melanogenesis is initiated upon exposure to ultraviolet (UV) radiation, causing the skin to darken, which protects skin cells from UVB radiation damage. However, the abnormal accumulation of melanin may lead to the development of certain skin diseases, including skin cancer. In this study, the antioxidant and antimelanogenic activities of the cell-free supernatant (CFS) of twenty strains were evaluated. Based on the results of 60% 2,2-diphenyl-1-picrylhydrazyl scavenging activity, 21% 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) scavenging capacity, and a 50% ascorbic acid equivalent ferric reducing antioxidant power value, Limosilactobacillus fermentum JNU532 was selected as the strain with the highest antioxidant potential. No cytotoxicity was observed in cells treated with the CFS of L. fermentum JNU532. Tyrosinase activity was reduced by 16.7% in CFS-treated B16F10 cells (but not in the cell-free system), with >23.2% reduction in melanin content upon treatment with the L. fermentum JNU532-derived CFS. The inhibitory effect of the L. fermentum JNU532-derived CFS on B16F10 cell melanogenesis pathways was investigated using quantitative reverse transcription polymerase chain reaction and western blotting. The inhibitory effects of the L. fermentum JNU532-derived CFS were mediated by inhibiting the transcription of TYR, TRP-1, TRP-2, and MITF and the protein expression of TYR, TRP-1, TRP-2, and MITF. Therefore, L. fermentum JNU532 may be considered a potentially useful, natural depigmentation agent.

Genetic Variants of CYP11B2 and CYP1A1 Among the North-Indian Punjabi Females with Polycystic Ovary Syndrome

  • Ratneev, Kaur;Mandeep, Kaur;Sukhjashanpreet, Singh;Tajinder, Kaur;Anupam, Kaur
    • 대한임상검사과학회지
    • /
    • 제54권4호
    • /
    • pp.316-324
    • /
    • 2022
  • Polycystic ovary syndrome (PCOS) is a complex endocrinopathy in women of reproductive age. The genetics of PCOS is heterogeneous with the involvement of number of genes in the steroid synthesis pathway. The CYP11B2 encodes aldosterone synthase and the genetic variants might increase aldosterone secretion in PCOS cases. CYP1A1 is known to enhance the intraovarian catechol estrogen production and thus the propensity for PCOS. The present case-control study analyzed a total of 619 females for CYP11B2 (rs1799998) and CYP1A1 (rs4646903) polymorphisms. Obesity was examined according to body mass index (BMI) and waist hip ratio (WHR) categorization. Biochemical (lipid profile) analysis was performed in PCOS females. BMI (P=0.0001) and WHR (P=0.0001) revealed a statistically significant difference between PCOS cases and controls. The overall levels of triglycerides were higher in PCOS females. The genotype frequency distribution of CYP11B2 (rs1799998) polymorphism revealed statistically significant difference between PCOS cases and controls (P=0.017). However, CYP1A1 (rs4646903) polymorphism did not showed any association with PCOS. The present case-control association analysis is first from our region for CYP1A1 and CYP11B2 polymorphisms and is suggestive of genetic predisposition of steroidogenic genes among PCOS patients in the North-Indian Punjabi females.

Phloroglucinol Enhances Anagen Signaling and Alleviates H2O2-Induced Oxidative Stress in Human Dermal Papilla Cells

  • Seokmuk Park;Ye Jin Lim;Hee Su Kim;Hee-Jae Shin;Ji-Seon Kim;Jae Nam Lee;Jae Ho Lee;Seunghee Bae
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.812-827
    • /
    • 2024
  • Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of β-Catenin. Since several anagen-inductive genes are regulated by β-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated β-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3β/β-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated β-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.

천초근 dichloromethane 추출물의 Jurkat T 세포에서 세포사멸 효과 (Apoptotic Effect of Rubia cordifolia Dichloromethane Extracts on Human Acute Jurkat T Cells)

  • 김지혜;이종환;김영호;김광현
    • 생명과학회지
    • /
    • 제19권2호
    • /
    • pp.163-168
    • /
    • 2009
  • 천초근은 전통적으로 동양의학에서 항암제로 사용되어왔는데 인간 급성 백혈병 세포주인 Jurkat T 세포를 사용하여 천초근의 세포독성기작을 알아보았다. 천초근 뿌리(3 kg)를 메탄올로 추출, 증류한 후 물에 녹여 다시 dichloromethane으로 추출분획 하였다. 세포독성 활성을 보이는 dichloromethane 추출물을 연속적으로 HPLC를 통해 분리하였고 그 활성물질(65 mg)을 CCH1이라 명명하였다. CCH1을 0.5 ${\mu}g$/ml에서 2.0 ${\mu}g$/ml의 농도로 처리하고 세포사멸 과정을 보았다. 즉, mitochondria cytochrome c 방출, casapase-8, -9 및 caspase-3의 활성화, PARP 분해, DNA 단편화 현상들이 일어나는 것을 관찰하였다. 하지만, mitochondria cytochrome c 방출 억제자인 Bcl-xL이 과발현되는 Jurkat T 세포에서는 세포사멸현상이 일어나지 않았다. 이러한 결과는 CCH1이 mitochondria 의존적인 신호전달 과정을 통해서 세포사멸을 유도 한다고 할 수 있다. 그리고 CCH1에 의한 세포독성은 혈액에서 분리한 단핵구 세포보다 Jurkat T 세포에서 보다 강한 활성을 보였다.

후박 열수 추출물의 Jurkat T 세포에서 세포사멸 효과 (Machilus Thunbergii Water Extract Induces Cytotoxic Effect against Human Acute Jurkat T Lymphoma)

  • 김민환;이종환
    • 생명과학회지
    • /
    • 제27권8호
    • /
    • pp.951-957
    • /
    • 2017
  • 후박은 전통적으로 동양의학에서 사용되어왔는데 인간 급성 백혈병 세포주인 Jurkat T 세포를 사용하여 후박의 세포독성 관련 기작을 알아보았다. 후박 뿌리(3 kg)를 메탄올로 추출, 증류한 후 내용물을 물에 녹여 동결 건조 후 사용 하였다. 그 활성물질을 MTWE이라 명명하였다. MTWE을 0, 25, 50, $100{\mu}g/ml$의 농도로 처리하고 세포사멸 과정을 보았다. 즉, mitochondria cytochrome c 방출, caspase-3의 활성화 및 ICAD 분해를 관찰하였다. 더욱이, mitochondria cytochrome c 방출 억제자인 Bcl-xL이 발현이 감소되는 것을 Jurkat T 세포에서는 확인하였다. 이러한 결과는 MTWE가 mitochondria 신호전달 과정을 통해서 세포사멸을 유도 한다고 할 수 있다. 또한, MTWE를 0, 25, 50, $100{\mu}g/ml$ 처리에 대한 암세포 성장억제인자인 DUSP6가 증가되는 것을 확인하였고 핵의 apoptotic morphology 변화를 DAPI를 통해 관찰할 수 있었다. 비록 DUSP6와 다른 관련인자들간의 관련성을 찾아야 하지만, 이상의 결과는 MTWE가 T세포에 의한 급성 백혈병을 조절하는데 이용 될 수 있다는 것의 의미한다.

Target Identification for Metabolic Engineering: Incorporation of Metabolome and Transcriptome Strategies to Better Understand Metabolic Fluxes

  • Lindley, Nic
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2004년도 Annual Meeting BioExibition International Symposium
    • /
    • pp.60-61
    • /
    • 2004
  • Metabolic engineering is now a well established discipline, used extensively to determine and execute rational strategies of strain development to improve the performance of micro-organisms employed in industrial fermentations. The basic principle of this approach is that performance of the microbial catalyst should be adequately characterised metabolically so as to clearlyidentify the metabolic network constraints, thereby identifying the most probable targets for genetic engineering and the extent to which improvements can be realistically achieved. In order to harness correctly this potential, it is clear that the physiological analysis of each strain studied needs to be undertaken under conditions as close as possible to the physico-chemical environment in which the strain evolves within the full-scale process. Furthermore, this analysis needs to be undertaken throughoutthe entire fermentation so as to take into account the changing environment in an essentially dynamic situation in which metabolic stress is accentuated by the microbial activity itself, leading to increasingly important stress response at a metabolic level. All too often these industrial fermentation constraints are overlooked, leading to identification of targets whose validity within the industrial context is at best limited. Thus the conceptual error is linked to experimental design rather than inadequate methodology. New tools are becoming available which open up new possibilities in metabolic engineering and the characterisation of complex metabolic networks. Traditionally metabolic analysis was targeted towards pre-identified genes and their corresponding enzymatic activities within pre-selected metabolic pathways. Those pathways not included at the onset were intrinsically removed from the network giving a fundamentally localised vision of pathway functionality. New tools from genome research extend this reductive approach so as to include the global characteristics of a given biological model which can now be seen as an integrated functional unit rather than a specific sub-group of biochemical reactions, thereby facilitating the resolution of complexnetworks whose exact composition cannot be estimated at the onset. This global overview of whole cell physiology enables new targets to be identified which would classically not have been suspected previously. Of course, as with all powerful analytical tools, post-genomic technology must be used carefully so as to avoid expensive errors. This is not always the case and the data obtained need to be examined carefully to avoid embarking on the study of artefacts due to poor understanding of cell biology. These basic developments and the underlying concepts will be illustrated with examples from the author's laboratory concerning the industrial production of commodity chemicals using a number of industrially important bacteria. The different levels of possibleinvestigation and the extent to which the data can be extrapolated will be highlighted together with the extent to which realistic yield targets can be attained. Genetic engineering strategies and the performance of the resulting strains will be examined within the context of the prevailing experimental conditions encountered in the industrial fermentor. Examples used will include the production of amino acids, vitamins and polysaccharides. In each case metabolic constraints can be identified and the extent to which performance can be enhanced predicted

  • PDF

Diethylnitrosamine 처리 후 병리학적 결과를 기초로 한 마우스 간에서의 유전자 발현 분석 (Gene Expression Profiling in Diethylnitrosamine Treated Mouse Liver: From Pathological Data to Microarray Analysis)

  • 김지영;윤석주;박한진;김용범;조재우;고우석;이미가엘
    • Toxicological Research
    • /
    • 제23권1호
    • /
    • pp.55-63
    • /
    • 2007
  • Diethylnitrosamine (DEN) is a nitrosamine compound that can induce a variety of liver lesions including hepatic carcinoma, forming DNA-carcinogen adducts. In the present study, microarray analyses were performed with Affymetrix Murine Genome 430A Array in order to identify the gene-expression profiles for DEN and to provide valuable information for the evaluation of potential hepatotoxicity. C57BL/6NCrj mice were orally administered once with DEN at doses of 0, 3, 7 and 20 mg/kg. Liver from each animal was removed 2, 4, 8 and 24 hrs after the administration. The histopathological analysis and serum biochemical analysis showed no significant difference in DEN-treated groups compared to control group. Conversely, the principal component analysis (PCA) profiles demonstrated that a specific normal gene expression profile in control groups differed clearly from the expression profiles of DEN-treated groups. Within groups, a little variance was found between individuals. Student's t-test on the results obtained from triplicate hybridizations was performed to identify those genes with statistically significant changes in the expression. Statistical analysis revealed that 11 genes were significantly downregulated and 28 genes were upregulated in all three animals after 2 h treatment at 20 mg/kg. The upregulated group included genes encoding Gdf15, JunD1, and Mdm2, while the genes including Sox6, Shmt2, and SIc6a6 were largely down regulated. Hierarchical clustering of gene expression also allowed the identification of functionally related clusters that encode proteins related to metabolism, and MAPK signaling pathway. Taken together, this study suggests that match with a toxicant signature can assign a putative mechanism of action to the test compound if is established a database containing response patterns to various toxic compounds.

항장효법에 의한 옥병풍산가미의 즉각형 알레르기 반응 억제 효과 (Inhibitory Effects of Immediate-Type Allergic Reaction of Okbyungpoongsan-Gami by Anal Therapy)

  • 조정연;문구원;문석재;원진희;유경태;이종덕
    • 동의생리병리학회지
    • /
    • 제16권2호
    • /
    • pp.239-244
    • /
    • 2002
  • Okbyungpoongsan-Gami (OG) has been used for the treatment of excessive sweating with general weakness and allergic rhinitis recently. Anal therapy is another way of taking Oriental medicine. It is an important pathway but not available in common clinical situation. This experiment was performed in order to study the inhibitory effect of immediate-type allergic reaction of OG by anal therapy. In addition, the experiment was practised by 1 H-NMR spectroscopy to examine molecular structure of OG. The results were obtained as follows : OG concentration-dependently inhibited compound 48/80- induced immediate type systemic allergic reaction with concentrations of 0.01-1.0g/kg by anal administration 1 h before injection of compound 48/80. OG also concentration-dependently inhibited compound 48/80- induced ear swelling response with concentrations of 0.01-1g/kg by anal administration 1h before injection of compound 48/80. OG also inhibited the passive cutaneous anaphylaxis activated by anti-dinitrophenyl (DNP) IgE antibody concentration- dependently at concentrations ranging from 0.01 to 1g/kg. When OG was pretreated at concentrations ranging from 0.01 to 1g/ℓ, the histamine release from the rat peritoneal mast cells induced by compound 48/80 was reduced in a concentration-dependent manner. OG (0.1-1g/ℓ) had a significant inhibitory effect on histamine release from IgE-induced activated mast cells. OG is seen to be a biochemical compound certainly by 1 H-NMR spectroscopy According to above results, anal therapy of OG may be beneficial in the treatment of systemic and local immediate-type allergic reactions by inhibition of histamine release from mast cells.

내관(內關)부위 자침이 몰핀에 민감화된 흰쥐의 c-fos 발현에 미치는 효과 (Effect of Acupuncture(PC6) on Fos-like Immunoreactivity in the Nucleus Accumbens in Rats Sensitized to Morphine)

  • 김상호;류승준;한원주;김모경;김태헌;강형원;류영수
    • 동의신경정신과학회지
    • /
    • 제16권2호
    • /
    • pp.13-24
    • /
    • 2005
  • Background and Objectives : Acupuncture as a therapeutic intervention is widely used for the treatment of many functional disorders such as substance abuse and mental dysfunction. Clinical trials are currently underway to determine the effectiveness of acupuncture in the treatment of drug addiction. Yet, there are still many unanswered questions about the basic mechanism of acupuncture. Studies have shown that both the psychomotor stimulant effects and rewarding properties of addictive drugs, including morphine, are sensitized by repeated drug administration and raised the possibility that both of these effects may be linked to the same or closely overlapping the mesolimbic dopamine systems. Neiguan (PC6) point on the pericardium channel which is associated with the brain and its mental function, has been used to treat mental, psychosomatic disorders and gastroenterological disorders. The present study was designed to investigate the effect of acupuncture on repeated morphine-induced changes in extracellular dopamine levels using in vivo microdialysis and to measure the effect of acupuncture on Fos-like immunoreactivity. Methods : Male Sprague-Dawley rats were treated twice a day for three days with increasing doses of morphine (10, 20 and 40 mg/kg, s.c.) or with saline. After 15 days of withdrawal, rats were challenged with morphine hydrochloride (5 mg/kg, s.c.). Acupuncture was applied at bilateral Neiguan (PC6) points for 1 min after the morphine challenge. Results showed that acupuncture at the specific acupoint PC6, but not at control points (tail and HE8) significantly decreased Fos-like immunoreactivity induced by a systemic morphine challenge or a single s.c. morphine injection in the morphine-repeated animals. Results and Conclusions : These results suggest that reduction in sensitization may be one mechanism whereby acupuncture alleviates morphine craving in addicts. Moreover, in a more general sense these results suggest that acupuncture can be used as a therapeutic intervention for correcting reversible malfunction of the body by direction of brain pathway and thus acupuncture can contribute to the biochemical balance in the central nervous system by regulating neurotransmitters.

  • PDF

A Protective Effect of Chlorella Supplementation on Cadmium-induced Nephrotoxicity in the Rats

  • Hwang Yoo-Kyeong;Choi Hyun-Jin;Nan Meng;Yoo Jai-Du;Kim Yong-Ho
    • 대한의생명과학회지
    • /
    • 제12권1호
    • /
    • pp.29-33
    • /
    • 2006
  • The uptake of cadmium in animals is mainly accumulated in and affected to the liver and kidney by binding with red blood cells and serum albumin. The process accounts for more than 50% of the total accumulated cadmium in the body. The kidneys may be damaged without regarding the pathway uptake of cadmium. In a group of rats on supplements of 1% chlorella and 40 ppm cadmium, the concentration of cadmium in urine greatly decreased by 66% compared to control group, and the total synthesis of metallothionein decreased by 48.6% compared to control group. However, no previous study has assessed the protective effect on kidney damage induced by cadmium uptake through supplementation with chlorella. This study analyzed the biochemical marker for kidney damage in the rats after uptake of 40 ppm $CdCl_2$ and supplementation of the diet of Sprague Dawley (SD) rats with 1%, 5%, and 10% chlorella during 4 weeks. In a group of SD rats on supplementation with 1% chlorella and uptake of 40 ppm $CdCl_2,\;\beta_2$ microglobulin in the urine was found to be $3.1\pm0.6\;{\mu}g/L$, a decrease of 58% compared to a group of Sp rats on uptake of $CdCl_2$ only, in which the $\beta_2$ microglobulin was found to be $4.9\pm0.7\;{\mu}g/L$. According to the results of histopathological observation, the accumulation of mild and localized chronic inflammatory cells in kidney tissues was observed in 50% of the SD rats on uptake of cadmium only. In contrast, only 30% of the SD rats on supplementation with 1% chlorella and uptake of 40ppm $CdCl_2$, representing a histopathological abnormality, and there were no histopathological abnormalities at all in groups of SD rats on supplementation with 5% or 10% chlorella and uptake of 40 ppm $CdCl_2$. In conclusion, protein, calcium, and iron, which account for more than 50% of the total dried chlorella composition, may contribute to the reduction nephrotoxicity by stimulating both inhibited absorption of cadium and increased excretion of accumulated cadmium in kidneys.

  • PDF