DOI QR코드

DOI QR Code

Machilus Thunbergii Water Extract Induces Cytotoxic Effect against Human Acute Jurkat T Lymphoma

후박 열수 추출물의 Jurkat T 세포에서 세포사멸 효과

  • Kim, Min Hwan (Department of Smart Bio-Health, Dong-eui University) ;
  • Lee, Jong-Hwan (Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University)
  • 김민환 (동의대학교 스마트바이오헬스학과) ;
  • 이종환 (동의대학교 바이오응용공학부 의생명공학전공)
  • Received : 2017.04.24
  • Accepted : 2017.06.08
  • Published : 2017.08.30

Abstract

To understand the cytotoxic activity of Machilus thunbergii, which has been used as a traditional oriental medicine, the mechanism underlying the cytotoxic effect of its extract on human acute Jurkat T cells was investigated. The methanol extract of roots (3 kg) of M. thunbergii was evaporated, dissolved in, and then extracted by water. The water-extracted active substance was designated MTWE. When Jurkat T cells were treated with MTWE at concentrations of 0, 25, 50, and $100{\mu}g/ml$, the apoptotic phenomenon of cells accompanying several subsequent biochemical reactions, such as mitochondrial cytochrome c release, activation of caspase-3, and ICAD degradation, was detected in the Jurkat T cells. Moverover. the expression of Bcl-xL, which is a suppressor for mitochondrial cytochrome c release pathway, was reduced in the Jurkat T cells. As DUSP6, a growth suppressor of cancer cells, ranged from 0, 25, 50, $100{\mu}g/ml$ of MTWE, the expression level was elevated in the Jurkat T cells. The apoptotic morphological change of the nuclei was observed by DAPI staining. Although the potential involvement of the other factors and DUSP6 is currently being investigated in more detail, these findings support the notion that MTWE is able to achieve the apoptosis of Jurkat T cells, and it seems that MTWE is useful as a method of evaluating a chemotherapeutic agent or tonic materials for human acute leukemia.

후박은 전통적으로 동양의학에서 사용되어왔는데 인간 급성 백혈병 세포주인 Jurkat T 세포를 사용하여 후박의 세포독성 관련 기작을 알아보았다. 후박 뿌리(3 kg)를 메탄올로 추출, 증류한 후 내용물을 물에 녹여 동결 건조 후 사용 하였다. 그 활성물질을 MTWE이라 명명하였다. MTWE을 0, 25, 50, $100{\mu}g/ml$의 농도로 처리하고 세포사멸 과정을 보았다. 즉, mitochondria cytochrome c 방출, caspase-3의 활성화 및 ICAD 분해를 관찰하였다. 더욱이, mitochondria cytochrome c 방출 억제자인 Bcl-xL이 발현이 감소되는 것을 Jurkat T 세포에서는 확인하였다. 이러한 결과는 MTWE가 mitochondria 신호전달 과정을 통해서 세포사멸을 유도 한다고 할 수 있다. 또한, MTWE를 0, 25, 50, $100{\mu}g/ml$ 처리에 대한 암세포 성장억제인자인 DUSP6가 증가되는 것을 확인하였고 핵의 apoptotic morphology 변화를 DAPI를 통해 관찰할 수 있었다. 비록 DUSP6와 다른 관련인자들간의 관련성을 찾아야 하지만, 이상의 결과는 MTWE가 T세포에 의한 급성 백혈병을 조절하는데 이용 될 수 있다는 것의 의미한다.

Keywords

References

  1. Bartova, E., Jirsova, P., Fojtova, M., Soucek, K. and Kozubek, S. 2003. Chromosomal territory segmentation in apoptotic cells. Cell Mol. Life Sci. 60, 979-990. https://doi.org/10.1007/s00018-003-2365-x
  2. Chiaretti, S. and Foa, R. 2009. T-cell acute lymphoblastic leukemia. Haematologica 94, 160-162. https://doi.org/10.3324/haematol.2008.004150
  3. Cragg, G. M., Grothaus, P. G. and Newman, D. J. 2009. Impact of natural products on developing new anti-cancer agents. Chem. Rev. 109, 3012-3043. https://doi.org/10.1021/cr900019j
  4. Furukawa, T., Sunamura, M., Motoi, F., Matsuno, S. and Horii, A. 2003. Potential tumor suppressive pathway involving DUSP6/MKP-3 in pancreatic cancer. Am. J. Pathol. 162, 1807-1815. https://doi.org/10.1016/S0002-9440(10)64315-5
  5. Kim, N. Y. and Ryu, J. H. 2003. Butanolides from Machilus thunbergii and their inhibitory activity on nitric oxide synthesis in activated macrophages. Phytother. Res. 17, 372-375. https://doi.org/10.1002/ptr.1160
  6. Km, W., Lyu, H. N., Kwon, H. S., Kim, Y. S., Lee, K., H., Kim, D. Y., Chakraborty, G., Choi, K. Y., Yoon, H. S. and Kim, K. T. 2013. Obtusilactone B from Machilus Thunbergii targets barrier-to-autointegration factor to treat cancer. Mol. Pharmacol. 83, 367-376. https://doi.org/10.1124/mol.112.082578
  7. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. and Newmeyer, D. D. 1997. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132-1136. https://doi.org/10.1126/science.275.5303.1132
  8. Kuribara, H., Kishi, E., Hattori, N., Yuzurihara, M. and Maruyama, Y. 1999. Application of the elevated plus-maze test in mice for evaluation of the content of honokiol in water extracts of magnolia. Phytother. Res. 13, 593-596. https://doi.org/10.1002/(SICI)1099-1573(199911)13:7<593::AID-PTR520>3.0.CO;2-F
  9. Larsen, B. D. and Sorensen, C. S. 2017. The caspase-activated DNase: apoptosis and beyond. FEBS J. 284, 1160-1170. https://doi.org/10.1111/febs.13970
  10. Lee, B. C., Doo, H. K., Lee, H. J., Jin, S. Y., Jung, J. H., Hong, S. J., Lee, S. H., Kim, S. D., Park, J. K., Leem, K. H. and Ahn, S. Y. 2004. The inhibitory effects of aqueous extract of Magnolia officinalis on human mesangial cell proliferation by regulation of platelet-derived growth factor-BB and transforming growth factor-beta1 expression. J. Pharmacol. Sci. 94, 81-85. https://doi.org/10.1254/jphs.94.81
  11. Lee, M. K., Yang, H., Ma, C. J. and Kim, Y. C. 2007. Stimulatory activity of lignans from Machilus thunbergii on osteoblast differentiation. Biol. Pharm. Bull. 30, 814-817 https://doi.org/10.1248/bpb.30.814
  12. Luo, X., Budihardjo, J., Zou, H., Slaughter, C. and Wang, X. 1998. BID, a Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334-336.
  13. Ma, C. J., Sung, S. H. and Kim, Y. C. 2004. Neuroprotective lignans from the bark of Machilus thunbergii. Planta Med. 70, 79-80. https://doi.org/10.1055/s-2004-815463
  14. McDonnell, J. M., Fushman, D., Milliman, C. L., Korsmeyer, S. J. and Cowburn, D. 1999. Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell 96, 625-634. https://doi.org/10.1016/S0092-8674(00)80573-5
  15. Okudela, K., Yazawa, T., Woo, T., Sakaeda, M., Ishii, J. and Mitsui, H. 2009. Down-regulation of DUSP6 expression in lung cancer: its mechanism and potential role in carcinogenesis. Am. J. Pathol. 175, 867-881. https://doi.org/10.2353/ajpath.2009.080489
  16. Park, B. Y., Min, B. S., Kwon, O. K., Oh, S. R., Ahn, K. S., Kim, T. J., Kim, D. Y., Bae, K. and Lee, H. K. 2004. Increase of caspase-3 activity by lignans from Machilus thunbergii in HL-60 cells. Biol. Pharm. Bull. 27, 1305-1307. https://doi.org/10.1248/bpb.27.1305
  17. Pui, C. H., Relling, M. V. and Downing, J. R. 2004. Acute lymphoblastic leukemia. New Engl. J. Med. 350, 1535-1548. https://doi.org/10.1056/NEJMra023001
  18. Ryu, J. H., Ahn, H., Kim, J. Y. and Kim, Y. K. 2003. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophages. Phytother. Res. 17, 485-489. https://doi.org/10.1002/ptr.1180
  19. Su, Y. C., Hsu, K. P., Li, S. C. and Ho, C. L. 2015. Composition, in vitro Cytotoxicity, and anti-mildew activities of the leaf essential oil of Machilus thunbergii from Taiwan. Nat. Prod. Commun. 10, 2013-2016.
  20. Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P. and Wang, X. 1997. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129-1132. https://doi.org/10.1126/science.275.5303.1129
  21. Yu, Y. U., Kang, S. Y., Park, H. Y., Sung, S. H., Lee, E. J., Kim, S. Y. and Kim, Y. C. 2000. Antioxidant lignans from Machilus thunbergii protect CCl4-injured primary cultures of rat hepatocytes. J. Pharm. Pharmacol. 52, 1163-1169. https://doi.org/10.1211/0022357001774949
  22. Zhai, Z., Liu, Y., Wu, L., Senchina, D. S., Wurtele, E. S., Murphy, P. A., Kohut, M. L. and Cunnick, J. E. 2007. Enhancement of innate and adaptive immune functions by multiple Echinacea species. J. Med. Food 10, 423-434. https://doi.org/10.1089/jmf.2006.257