DOI QR코드

DOI QR Code

Effect of Exogenous Trehalose on the Solvent Tolerance of Pseudomonas sp. BCNU 106

유기용매 내성 Pseudomonas sp. BCNU 106 균주의 외인성 트레할로스의 영향

  • Choi, Hye Jung (Department of Biology and Chemistry, Changwon National University) ;
  • Lim, Bo Ra (Department of Biology and Chemistry, Changwon National University) ;
  • Ha, Sang-Chul (Department of Confectionery Decoration, Daegu Mirae College) ;
  • Kwon, Gi-Seok (Department of Medicinal Plant Resources, Andong National University) ;
  • Kim, Dong Wan (Department of BioHealth Sciences, Changwon National University) ;
  • Joo, Woo Hong (Department of Biology and Chemistry, Changwon National University)
  • 최혜정 (창원대학교 생물학화학융합학부) ;
  • 임보라 (창원대학교 생물학화학융합학부) ;
  • 하상철 (대구미래대학교 제과데코레이션과) ;
  • 권기석 (안동대학교 생약자원학과) ;
  • 김동완 (창원대학교 생명보건학부) ;
  • 주우홍 (창원대학교 생물학화학융합학부)
  • Received : 2016.12.28
  • Accepted : 2017.02.15
  • Published : 2017.08.30

Abstract

To some extent, the growth of solvent-tolerant Pseudomonas sp. BCNU 106 is limited by toxic solvents. Therefore, various strategies to overcome this limitation need to be investigated. One such strategy is to use exogenous trehalose. The highest intracellular trehalose content of 181.88 mM was measured at 12 hr. The extracellular trehalose content decreased rapidly within 12 to 16 hr in the presence of cyclohexane. Moreover, the number of Pseudomonas sp. BCNU 106 cells grown in Luria-Bertani (LB) broth supplemented with 0.1 M trehalose in the presence of 1%(v/v) cyclohexane, hexane, propylbenzene, and m-xylene increased 89.94-, 89.72-, 91.25-, and 118.9-fold, respectively, in comparison to the control level. High survival rates of 80% and 90% were observed in the presence of cyclohexane and hexane by the addition of 0.05 M trehalose for up to 4 hr, respectively. Exogenously-added trehalose was transported into the cells, and it conferred protection against cyclohexane, hexane, propylbenzene, and m-xylene. Adding exogenous trehalose to the growth medium improved the tolerance of Pseudomonas sp. BCNU 106; thus, it is a potential biocatalyst for biotransformation and biodegradation.

유기용매 내성 Pseudomonas sp. BCNU 106은 독성 용매에 의해 일부 생장이 제한되므로 다양한 생존전략이 필요하다. 이러한 한계를 극복하기 위한 하나의 전략으로 외인성 트레할로오스를 사용하는 것이다. Cyclohexane 존재하에 세포내 트레할로스 함량은 12시간 배양했을 때 181.88 mM로 가장 높게 측정되었고, 세포외 트레할로스 함량은 12시간에서 16시간 사이에 급격하게 감소하였다. 또한 1%(v/v) cyclohexane, hexane, propylbenzene 및 m-xylene 존재하에 0.1 M 트레할로스가 첨가된 LB 배지에서 Pseudomonas sp. BCNU 106 균주의 생장은 트레할로스가 첨가되지 않은 대조군에 비해 각각 89.94, 89.72, 91.25 및 118.9 배 증가하였으며, cyclohexane 및 hexane 존재하에서 0.05 M 트레할로스를 첨가했을 때 4시간 동안 각각 80과 90% 이상의 높은 생존율을 보였다. 이는 배지에 첨가된 트레할로스가 세포 내로 이동하면서 cyclohexane, hexane, propylbenzene 및 m-xylene 스트레스에 대해 방어작용을 한 것으로 보인다. 따라서 성장배지에 트레할로스를 첨가함에 따라 Pseudomonas sp. BCNU 106의 유기용매 내성이 향상되어 생물전환 및 생물분해에 대한 잠재적인 생물촉매로 사용 가능할 것이다.

Keywords

References

  1. Choi, H. J., Hwang, M. J., Kim, D. W. and Joo, W. H. 2013. Characterization of Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 106. J. Life Sci. 26, 603-607.
  2. Choi, H. J., Seo, J. Y., Hwang, S. M., Lee, Y. I., Jeong, Y. K., Moon, J. Y. and Joo, W. H. 2013. Isolation and characterization of BTEX tolerant and degrading Pseudomonas putida BCNU 106. Biotechnol. Bioprocess Eng. 18, 1000-1007. https://doi.org/10.1007/s12257-012-0860-1
  3. Crowe, J. H., Hoekstra, F. A. and Crowe, L. M. 1992. Anhydrobiosis. Annu. Rev. Physiol. 54, 579-599. https://doi.org/10.1146/annurev.ph.54.030192.003051
  4. Csonka, L. N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53, 121-147.
  5. Giaver, H. M., Styrvold, O. B., Kaasen, I. and Stram, A. R. 1988. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J. Bacteriol. 170, 2841-2849. https://doi.org/10.1128/jb.170.6.2841-2849.1988
  6. Hasan, F., Shah, A. A. and Hameed, A. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39, 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016
  7. Heipieper, H. J., Neumann, G., Cornelissen, S. and Meinhardt, F. 2007. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl. Microbiol. Biotechnol. 74, 961-973. https://doi.org/10.1007/s00253-006-0833-4
  8. Jaeger, K. E. and Eggert, T. 2004. Enantioselective biocatalysis optimized by directed evolution. Curr. Opin. Chem. Biol. 15, 305-313.
  9. Kumar, A., Dhar, K., Kanwar, S. S. and Arora, P. K. 2016. Lipase catalysis in organic solvents: advantages and applications. Biol. Proced. Online 18, 2-11. https://doi.org/10.1186/s12575-016-0033-2
  10. Lim, B. R., Choi, H. J., Kwon, G. S. and Joo, W. H. 2015. Enhancement of solvent tolerance in Pseudomonas sp. BCNU 106 with trehalose. Lett. Appl. Microbiol. 61, 607-612. https://doi.org/10.1111/lam.12504
  11. Lima, V. M. G., Krieger, N., Mitchell, D. A., Baratti, J. C., Filippis, I. and Fontana, J. D. 2004. Evaluation of the potential for use in biocatalysis of a lipase from a wild strain of Bacillus megaterium. J. Mol. Catal. B Enzym. 31, 53-61. https://doi.org/10.1016/j.molcatb.2004.07.005
  12. Ogino, H., Yasui, K., Shiotani, T., Ishihara, T. and Ishikawa, H. 1995. Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. Appl. Environ. Microbiol. 61, 4258-4262.
  13. Paje, M. L., Neilan, B. A. and Couperwhite, I. A. 1997. Rhodococcus species that thrives on medium saturated with liquid benzene. Microbiology 143, 2975-2981. https://doi.org/10.1099/00221287-143-9-2975
  14. Purvis, J. E., Yomano, L. P. and Ingram, L. O. 2005. Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl. Environ. Microbiol. 71, 3761-3769. https://doi.org/10.1128/AEM.71.7.3761-3769.2005
  15. Rahman, R. N., Baharum, S. N., Basri, M. and Salleh, A. B. 2005. High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal. Biochem. 341, 267-274. https://doi.org/10.1016/j.ab.2005.03.006
  16. Schutte, M. and Fetzner, S. 2007. EstA from Arthrobacter nitroguajacolicus Ru61a, a thermo-and solvent-tolerant carboxylesterase related to class C ${\beta}$-lactamases. Curr. Microbiol. 54, 230-236. https://doi.org/10.1007/s00284-006-0438-2
  17. Sharma, S. and Kanwar, S. S. 2014. Organic solvent tolerant lipases and applications. Sci. World J. 2014, 625258.
  18. Schiraldi, C., Lernia, I. D. and Rosa, M. D. 2002. Trehalose production: exploiting novel approaches. Trends Biotechnol. 20, 420-425. https://doi.org/10.1016/S0167-7799(02)02041-3
  19. Vieille, C. and Zeikus, G. J. 2001. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 1-43. https://doi.org/10.1128/MMBR.65.1.1-43.2001