• Title/Summary/Keyword: biochemical pathway

검색결과 159건 처리시간 0.029초

Identification of Gene-based Potential Biomarkers for Cephalexin-induced Nephrotoxicity in Mice

  • Park, Han-Jin;Oh, Jung-Hwa;Hwang, Ji-Yoon;Lim, Jung-Sun;Jeong, Sun-Young;Kim, Yong-Bum;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • 제2권3호
    • /
    • pp.193-201
    • /
    • 2006
  • Cephalexin, one of most widely prescribed cephalosporin, has been reported to cause acute renal failure as a side effect in human and experimental animals. Although numerous animal studies have been reported for the cephalosporin nephrotoxicity, the molecular and cellular nephrotoxic mechanisms of cephalexin are still unknown. This investigation evaluated the time-dependent gene expression profile of kidney in mouse during cephalexin induced nephrotoxicity. C57BL/6 female mice were administered either saline or 1,000 mg/kg cephalexin intraperitoneally. Mice were sacrificed at 3, 6, and 24 hr after administration. Blood biochemical and histopathological results indicated cephalexin induced nephrotoxicity. Microarray experiment carried out using Affymetrix $GeneChip^{(R)}$. There were 198 informative genes that were significantly expressed >5-fold versus control at 3, 6, and 24 hr (p<0.01), of which 156 and 42 were up-and down-regulated, respectively. Major classes of up-regulated genes at 3, 6 hr included those involved in MAPK/Jak-STAT signaling pathway and immune response such as cytokine-cytokine receptor interaction and complement and coagulation cascades. At 24 hr, up-regulated genes were mainly involved in regeneration/repair and immune response; down-regulated genes were generally associated with transporters and intermediary metabolism. Among the up-regulated genes at 24 hr, several potential biomarkers on nephrotoxicity such as Kim-1, Fga, Timp1, and Slc34a2 were clustered in a same category. In addition, Tnfrsf12a and Lcn2 which were consistently up-regulated (>5 fold) were also included as potential biomarkers. These results may provide clues for elucidating the mechanism of cephalexin induced nephrotoxicity and evaluating potential biomarkers to assess nephrotoxicity.

Wheatgrass extract inhibits hypoxia-inducible factor-1-mediated epithelial-mesenchymal transition in A549 cells

  • Do, Nam Yong;Shin, Hyun-Jae;Lee, Ji-Eun
    • Nutrition Research and Practice
    • /
    • 제11권2호
    • /
    • pp.83-89
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Epithelial-mesenchymal transition (EMT) is involved in not only cancer development and metastasis but also non-cancerous conditions. Hypoxia is one of the proposed critical factors contributing to formation of chronic rhinosinusitis or nasal polyposis. Wheatgrass (Triticum aestivum) has antioxidant, anti-aging, and anti-inflammatory effects. In this study, we analyzed whether wheatgrass has an inhibitory effect on the EMT process in airway epithelial cells. MATERIALS/METHODS: A549 human lung adenocarcinoma cells were incubated in hypoxic conditions ($CO_2$ 5%/$O_2$ 1%) for 24 h in the presence of different concentrations of wheatgrass extract (50, 75, 100, and $150{\mu}g/mL$) and changes in expression of epithelial or mesenchymal markers were evaluated by immunoblotting and immunofluorescence. Accordingly, associated EMT-related transcriptional factors, Snail and Smad, were also evaluated. RESULTS: Hypoxia increased expression of N-cadherin and reduced expression of E-cadherin. Mechanistically, E-cadherin levels were recovered during hypoxia by silencing hypoxia inducible factor (HIF)-$1{\alpha}$ or administering wheatgrass extract. Wheatgrass inhibited the hypoxia-mediated EMT by reducing the expression of phosphorylated Smad3 (pSmad3) and Snail. It suppressed the hypoxia-mediated EMT processes of airway epithelial cells via HIF-$1{\alpha}$ and the pSmad3 signaling pathway. CONCLUSION: These results suggest that wheatgrass has potential as a therapeutic or supplementary agent for HIF-1-related diseases.

Carrot Juice Administration Decreases Liver Stearoyl-CoA Desaturase 1 and Improves Docosahexaenoic Acid Levels, but Not Steatosis in High Fructose Diet-Fed Weanling Wistar Rats

  • Mahesh, Malleswarapu;Bharathi, Munugala;Reddy, Mooli Raja Gopal;Kumar, Manchiryala Sravan;Putcha, Uday Kumar;Vajreswari, Ayyalasomayajula;Jeyakumar, Shanmugam M.
    • Preventive Nutrition and Food Science
    • /
    • 제21권3호
    • /
    • pp.171-180
    • /
    • 2016
  • Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases associated with an altered lifestyle, besides genetic factors. The control and management of NAFLD mostly depend on lifestyle modifications, due to the lack of a specific therapeutic approach. In this context, we assessed the effect of carrot juice on the development of high fructose-induced hepatic steatosis. For this purpose, male weanling Wistar rats were divided into 4 groups, fed either a control (Con) or high fructose (HFr) diet of AIN93G composition, with or without carrot juice (CJ) for 8 weeks. At the end of the experimental period, plasma biochemical markers, such as triglycerides, alanine aminotransferase, and ${\beta}$-hydroxy butyrate levels were comparable among the 4 groups. Although, the liver injury marker, aspartate aminotransferase, levels in plasma showed a reduction, hepatic triglycerides levels were not significantly reduced by carrot juice ingestion in the HFr diet-fed rats (HFr-CJ). On the other hand, the key triglyceride synthesis pathway enzyme, hepatic stearoyl-CoA desaturase 1 (SCD1), expression at mRNA level was augmented by carrot juice ingestion, while their protein levels showed a significant reduction, which corroborated with decreased monounsaturated fatty acids (MUFA), particularly palmitoleic (C16:1) and oleic (C18:1) acids. Notably, it also improved the long chain n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA; C22:6) content of the liver in HFr-CJ. In conclusion, carrot juice ingestion decreased the SCD1-mediated production of MUFA and improved DHA levels in liver, under high fructose diet-fed conditions. However, these changes did not significantly lower the hepatic triglyceride levels.

Sphingomonas chungbukensis DJ77의 Glucosyl-Isoprenyl Phosphate-Transferase를 암호화할 것으로 추정되는 spsB 유런자 (A spsB Gene Putatively Encoding Glucosyl-Isopreny Phosphate-Transferase in Sphingomonas chungbukensis DJ77)

  • 이수연;최정도;신말식;김영창
    • 미생물학회지
    • /
    • 제41권1호
    • /
    • pp.8-12
    • /
    • 2005
  • S. chungbukensis DJ77의 genome project수행 결과 다당류 생 합성 에 관련된 유전자들의 염기서열을 찾아내었다. 본 논문에서는 이러한 유전자들 중 sphigan형 다당류 생합성에 관여하는 glucosyl-isoprenyl phosphate-transferase를 암호화 하는 유전자의 완전한 서열을 결정하였고, spsB로 명명하였다. 이 유전자는 ATG를 개시코돈으로 사용하며, TGA를 종결코돈으로 사용하고 있다. 또한 총 1392 bp의 open reading frame을 포함하며, 463개의 아미노산으로 구성되어있다. SpsB를 구성하는 아미노산 서열은 동일한 속의 sphingan 형성 균주인 Sphingomonas spp S88의 SpsB와 $50\%$, Sphingomonas paucimobilis ATCC 31461의 GelB와 $48\%$의 유사성을 나타내었다.

BMP-2에 의한 협부 지방 성체 줄기세포의 골형성 (OSTEOGENESIS BY BMP-2 IN ADULT STEM CELL DERIVED FROM BUCCAL FAT PAD)

  • 김창현;박철헌;이일규;표성운
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권4호
    • /
    • pp.412-418
    • /
    • 2008
  • Bone morphogenetic proteins (BMPs) in combination with stem cells gain more significance for their use in bone tissue engineering. The mesenchymal stem cell can be differentiated into osteoblast by the treatment of BMP. The aim of this study is to characterize the osteogenic differentiation process of adult stem cells derived from buccal fat pad according to BMP-2 within culture media and decide the appropriate concentration of BMP-2 to facilitate osteogenesis. The authors procured the stem cell from buccal fat pad and analyzed for presence of stem cell by flow cytomety against CD-34, CD-105 and STRO-1. The buccal fat derived stem cells (BFDC) were treated by application of the different concentration with BMP-2 of 0, 10, 50, 100 and 200ng/ml, respectively. And their ability to differentiate into osteogenic pathway were checked by alkaline phosphatase(ALP) staining, Alizarin red staining and RT-PCR for osteocalcin(OC) gene expression at 7, 14 and 21day of culture. Flow cytometric analysis and biochemical assays demonstrated that BFDC might be a distinguished stem cells, and mineralization was accompanied in proportion to BMP-2 concentration. However, with 100ng/ml concentration of BMP-2, the BFDC demonstrated most efficient staining pattern of ALP and Alizarin red. The feasibility of the osteogenic differentiation in the group of both 50ng/ml and 200ng/ml of BMP-2 showed similar activity and relatively weaker than that of 100ng/ml. These results suggest that the BMP-2 stimulate osteogenesis by BFDC effectively and that bone induction might be controlled through negative regulatory feedback in higher concentration.

Effect of SO2 - NO2 fumigation on wooden tree seedlings in open top chamber system

  • Katiyar, Vinita
    • Advances in environmental research
    • /
    • 제3권4호
    • /
    • pp.355-365
    • /
    • 2014
  • The present study has been performed on one year old tree saplings of Azadirachta indica (L.), Cassia siamea (L.), Dalbergia sissoo (Roxb.), Eucalyptus rostrata (L.), Mangifera indica (L.) and Schyzygium cumini (L.) in order to assess the effect of exposure of $SO_2-NO_2$, alone and combination of two gases. Tree saplings have been exposed to an average of $495{\mu}g\;m^{-3}$ $SO_2$ and $105{\mu}g\;m^{-3}$ $NO_2$ for 40 d at the rate of $4hd^{-1}$ during 10:00 am to 01:00 pm in OTC. Total chlorophyll, specific leaf area (SLA), nitrate reductase (NR) activity, foliar protein, free proline content and free amino acids (AAs) of foliage have been the plant parameters, taken into consideration to evaluate the effect of gaseous exposure. Exposure of two gases has caused reduction in total chlorophyll content (P < 0.05, 0.01). Physiological and biochemical process has been seemed to be altered noticeable due to the combined effect of $SO_2+NO_2$ followed by $SO_2$ alone (P < 0.05, 0.01). $NO_2$ mediated stress has produced, stimulatory and inhibitory responses in tree saplings. Results reveal that tree saplings have been attempted to absorb the $NO_2$ through N assimilation pathway. E. rostrata, C. siamea have been emerged as moderate tolerant to $SO_2$ mediated stress followed by A. indica. Response pattern of S. cumini, M. indica and D. sissoo set them as good indicators of $SO_2-NO_2$ exposure. Effects of two gases on tree saplings have been found to be synergistic.

알코올과 식이엽산수준이 혈장 Homocysteine, 간기능, 간 조직검사에 미치는 영향 (Effects of Alcohol Administration and Dietary Folate on Plasma Homocysteine and Liver Histopathology)

  • 장남수;김기남;김연수;서종복;권오옥
    • Journal of Nutrition and Health
    • /
    • 제31권7호
    • /
    • pp.1121-1129
    • /
    • 1998
  • The critical role of folate vitamin in the remethylation pathway for methionine synthesis from homocysteine has been well documented. Hyperhomocysteinemia resulting from inadequate folate nutrition has been implicated in increased incidence of macrovascular diseases, colorectal cancer, neural tube defects, etc. Chronic exposure to ethanol impairs folate nutrition and one-carbon metabolism in the liver, which often results in fatty liver due to a defective remethylation process. This study was carried out to investigate the chronic effects of moderate levels of alcohol and dietary 131ate on plasma homocysteine levels, and on histopathology and biochemical functions of the liver Rats were raised on experimental diets with three levels of folate(0, 2, 8mg/kg diet), and 50% ethanol(1.8m1/kg body weight) was administered intragastrically by intubation tubes three times a week for 10 weeks. Plasma homocysteine concentrations were found to be significantly influenced by dietary folate intake and alcohol administration. Among all treatment groups, Plasma homocysteine levels were highest in the animals receiving a combined treatment of folate deficient diet and alcohol administration. Plasma homocysteine concentration was negatively correlated with folate concentration in the plasma(p<0.01) and liver(p<0.05). Among alcohol treated rats, increase in plasma homocysteine values due to ethanol was prevented by 131ate supplementation. When liver histological tests were performed, macrovascular and microvascular fatty changes and spotted necrosis were observed more frequently in folate-deficient animals diet than those on folate-adequate and folate-supplemented diets in alcohol-treated rats. These results indicate that folate supplementation above the recommended level might be beneficial in the prevention of alcohol-related hyperhomocystei-nemia and abnormal histologic changes in the liver due. (Korean J Nutrition 31(7) : l121-l129, 1998)

  • PDF

Carbamoyl Phosphate Synthase Subunit CgCPS1 Is Necessary for Virulence and to Regulate Stress Tolerance in Colletotrichum gloeosporioides

  • Mushtaq, Aamar;Tariq, Muhammad;Ahmed, Maqsood;Zhou, Zongshan;Ali, Imran;Mahmood, Raja Tahir
    • The Plant Pathology Journal
    • /
    • 제37권3호
    • /
    • pp.232-242
    • /
    • 2021
  • Glomerella leaf spot (GLS) is a severe infectious disease of apple whose infective area is growing gradually and thus poses a huge economic threat to the world. Different species of Colletotrichum including Colletotrichum gloeosporioides are responsible for GLS. For efficient GLS control, it is important to understand the mechanism by which the cruciferous crops and C. gloeosporioides interact. Arginine is among one of the several types of amino acids, which plays crucial role in biochemical and physiological functions of fungi. The arginine biosynthesis pathway involved in virulence among plant pathogenic fungi is poorly understood. In this study, CgCPS1 gene encoding carbamoyl phosphate synthase involved in arginine biosynthesis has been identified and inactivated experimentally. To assess the effects of CgCPS1, we knocked out CgCPS1 in C. gloeosporioides and evaluated its effects on virulence and stress tolerance. The results showed that deletion of CgCPS1 resulted in loss of pathogenicity. The ∆cgcps1 mutants showed slow growth rate, defects in appressorium formation and failed to develop lesions on apple leaves and fruits leading to loss of virulence while complementation strain (CgCPS1-C) fully restored its pathogenicity. Furthermore, mutant strains showed extreme sensitivity to high osmotic stress displaying that CgCPS1 plays a vital role in stress response. These findings suggest that CgCPS1 is major factor that mediates pathogenicity in C. gloeosporioides by encoding carbamoyl phosphate that is involved in arginine biosynthesis and conferring virulence in C. gloeosporioides.

In Vivo Characterization of Phosphotransferase-Encoding Genes istP and forP as Interchangeable Launchers of the C3',4'-Dideoxygenation Biosynthetic Pathway of 1,4-Diaminocyclitol Antibiotics

  • Nguyen, Lan Huong;Lee, Na Joon;Hwang, Hyun Ha;Son, Hye Bin;Kim, Hye Ji;Seo, Eun Gyo;Nguyen, Huu Hoang;Park, Je Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권3호
    • /
    • pp.367-372
    • /
    • 2019
  • Deactivation of aminoglycosides by their modifying enzymes, including a number of aminoglycoside O-phosphotransferases, is the most ubiquitous resistance mechanism in aminoglycoside-resistant pathogens. Nonetheless, in a couple of biosynthetic pathways for gentamicins, fortimicins, and istamycins, phosphorylation of aminoglycosides seems to be a unique and initial step for the creation of a natural defensive structural feature such as a 3',4'-dideoxy scaffold. Our aim was to elucidate the biochemical details on the beginning of these C3',4'-dideoxygenation biosynthetic steps for aminoglycosides. The biosynthesis of istamycins must surely involve these 3',4'-didehydroxylation steps, but much less has been reported in terms of characterization of istamycin biosynthetic genes, especially about the phosphotransferase-encoding gene. In the disruption and complementation experiments pointing to a putative gene, istP, in the genome of wild-type Streptomyces tenjimariensis, the function of the istP gene was proved here to be a phosphotransferase. Next, an in-frame deletion of a known phosphotransferase-encoding gene forP from the genome of wild-type Micromonospora olivasterospora resulted in the appearance of a hitherto unidentified fortimicin shunt product, namely 3-O-methyl-FOR-KK1, whereas complementation of forP restored the natural fortimicin metabolite profiles. The bilateral complementation of an istP gene (or forP) in the ${\Delta}forP$ mutant (or ${\Delta}istP$ mutant strain) successfully restored the biosynthesis of 3',4'-dideoxy fortimicins and istamycins, thus clearly indicating that they are interchangeable launchers of the biosynthesis of 3',4'-dideoxy types of 1,4-diaminocyclitol antibiotics.

Hepatotoxic mechanism of diclofenac sodium on broiler chicken revealed by iTRAQ-based proteomics analysis

  • Sun, Chuanxi;Zhu, Tianyi;Zhu, Yuwei;Li, Bing;Zhang, Jiaming;Liu, Yixin;Juan, Changning;Yang, Shifa;Zhao, Zengcheng;Wan, Renzhong;Lin, Shuqian;Yin, Bin
    • Journal of Veterinary Science
    • /
    • 제23권4호
    • /
    • pp.56.1-56.17
    • /
    • 2022
  • Background: At the therapeutic doses, diclofenac sodium (DFS) has few toxic side effects on mammals. On the other hand, DFS exhibits potent toxicity against birds and the mechanisms remain ambiguous. Objectives: This paper was designed to probe the toxicity of DFS exposure on the hepatic proteome of broiler chickens. Methods: Twenty 30-day-old broiler chickens were randomized evenly into two groups (n = 10). DFS was administered orally at 10mg/kg body weight in group A, while the chickens in group B were perfused with saline as a control. Histopathological observations, serum biochemical examinations, and quantitative real-time polymerase chain reaction were performed to assess the liver injury induced by DFS. Proteomics analysis of the liver samples was conducted using isobaric tags for relative and absolute quantification (iTRAQ) technology. Results: Ultimately, 201 differentially expressed proteins (DEPs) were obtained, of which 47 were up regulated, and 154 were down regulated. The Gene Ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway analysis were conducted to screen target DEPs associated with DFS hepatotoxicity. The regulatory relationships between DEPs and signaling pathways were embodied via a protein-protein interaction network. The results showed that the DEPs enriched in multiple pathways, which might be related to the hepatotoxicity of DFS, were "protein processing in endoplasmic reticulum," "retinol metabolism," and "glycine, serine, and threonine metabolism." Conclusions: The hepatotoxicity of DFS on broiler chickens might be achieved by inducing the apoptosis of hepatocytes and affecting the metabolism of retinol and purine. The present study could provide molecular insights into the hepatotoxicity of DFS on broiler chickens.