DOI QR코드

DOI QR Code

Carbamoyl Phosphate Synthase Subunit CgCPS1 Is Necessary for Virulence and to Regulate Stress Tolerance in Colletotrichum gloeosporioides

  • Mushtaq, Aamar (Department of Biotechnology, Mirpur University of Science and Technology (MUST)) ;
  • Tariq, Muhammad (Department of Biotechnology, Mirpur University of Science and Technology (MUST)) ;
  • Ahmed, Maqsood (Department of Biotechnology, Mirpur University of Science and Technology (MUST)) ;
  • Zhou, Zongshan (Research Institute of Pomology, Chinese Academy of Agricultural Sciences) ;
  • Ali, Imran (Department of Biotechnology, Mirpur University of Science and Technology (MUST)) ;
  • Mahmood, Raja Tahir (Department of Biotechnology, Mirpur University of Science and Technology (MUST))
  • Received : 2020.11.16
  • Accepted : 2021.03.25
  • Published : 2021.06.01

Abstract

Glomerella leaf spot (GLS) is a severe infectious disease of apple whose infective area is growing gradually and thus poses a huge economic threat to the world. Different species of Colletotrichum including Colletotrichum gloeosporioides are responsible for GLS. For efficient GLS control, it is important to understand the mechanism by which the cruciferous crops and C. gloeosporioides interact. Arginine is among one of the several types of amino acids, which plays crucial role in biochemical and physiological functions of fungi. The arginine biosynthesis pathway involved in virulence among plant pathogenic fungi is poorly understood. In this study, CgCPS1 gene encoding carbamoyl phosphate synthase involved in arginine biosynthesis has been identified and inactivated experimentally. To assess the effects of CgCPS1, we knocked out CgCPS1 in C. gloeosporioides and evaluated its effects on virulence and stress tolerance. The results showed that deletion of CgCPS1 resulted in loss of pathogenicity. The ∆cgcps1 mutants showed slow growth rate, defects in appressorium formation and failed to develop lesions on apple leaves and fruits leading to loss of virulence while complementation strain (CgCPS1-C) fully restored its pathogenicity. Furthermore, mutant strains showed extreme sensitivity to high osmotic stress displaying that CgCPS1 plays a vital role in stress response. These findings suggest that CgCPS1 is major factor that mediates pathogenicity in C. gloeosporioides by encoding carbamoyl phosphate that is involved in arginine biosynthesis and conferring virulence in C. gloeosporioides.

Keywords

References

  1. Auyong, A. S. M., Ford, R. and Taylor, P. W. J. 2015. The role of cutinase and its impact on pathogenicity of Colletotrichum truncatum. J. Plant Pathol. Microbiol. 6:259-270.
  2. Bedford, M. T. and Richard, S. 2005. Arginine methylation: an emerging regulatorof protein function. Mol. Cell 18:263-272. https://doi.org/10.1016/j.molcel.2005.04.003
  3. Bogo, A., Casa, R. T., Rufato, L. and Goncalves, M. J. 2012. The effect of hail protection nets on Glomerella leaf spot in 'royal Gala'apple. Crop Prot. 31:40-44. https://doi.org/10.1016/j.cropro.2011.08.024
  4. Choi, J., Cheong, K., Jung, K., Jeon, J., Lee, G.-W., Kang, S., Kim, S., Lee, Y.-W. and Lee, Y.-H. 2013. CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes. Nucleic Acids Res. 41:714-719.
  5. Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L. and Gurr, S. J. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186-194. https://doi.org/10.1038/nature10947
  6. Gong, X., Fu, Y., Jiang, D., Li, G., Yi, X. and Peng, Y. 2007. LArginine is essential for conidiation in the filamentous fungus Coniothyrium minitans. Fungal Genet. Biol. 44:1368-1379. https://doi.org/10.1016/j.fgb.2007.07.007
  7. Hamada, N. A., Moreira, R. R., Nesi, C. N. and May De Mio, L. L. 2019. Pathogen dispersal and Glomerella leaf spot progress within apple canopy in Brazil. Plant Dis. 103:3209-3217. https://doi.org/10.1094/PDIS-08-18-1375-RE
  8. He, Y. Q. 2000. An improved protocol for fungal DNA preparation. Mycosystema 19:434 (in Chinese). https://doi.org/10.3969/j.issn.1672-6472.2000.03.030
  9. Hilger, F., Culot, M., Minet, M., Pierard, A., Grenson, M. and Wiame, J. M. 1973. Studies on the kinetics of the enzyme sequence mediating arginine synthesis in Saccharomyces cerevisiae. J. Gen. Microbiol. 75:33-41. https://doi.org/10.1099/00221287-75-1-33
  10. Holden, H. M., Thoden, J. B. and Raushel, F. M. 1999. Carbamoyl phosphate synthetase: an amazing biochemical odyssey from substrate to product. Cell. Mol. Life Sci. 56:507-522. https://doi.org/10.1007/s000180050448
  11. Hong, J., Salo, W. L., Lusty, C. J. and Anderson, P. M. 1994. Carbamyl phosphate synthetase III, an evolutionary intermediate in the transition between glutamine-dependent and ammoniadependent carbamyl phosphate synthetases. J. Mol. Biol. 243:131-140. https://doi.org/10.1006/jmbi.1994.1638
  12. Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T. K., Bateman, A., Bernard, T., Binns, D., Bork, P., Burge, S., de Castro, E., Coggill, P., Corbett, M., Das, U., Daugherty, L., Duquenne, L., Finn, R. D., Fraser, M., Gough, J., Haft, D., Hulo, N., Kahn, D., Kelly, E., Letunic, I., Lonsdale, D., Lopez, R., Madera, M., Maslen, J., McAnulla, C., McDowall, J., McMenamin, C., Mi, H., Mutowo-Muellenet, P., Mulder, N., Natale, D., Orengo, C., Pesseat, S., Punta, M., Quinn, A. F., Rivoire, C., Sangrador-Vegas, A., Selengut, J. D., Sigrist, C. J., Scheremetjew, M., Tate, J., Thimmajanarthanan, M., Thomas, P. D., Wu, C. H., Yeats, C. and Yong, S. Y. 2012. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res. 40(Database issue 1):D306- D312. https://doi.org/10.1093/nar/gkr948
  13. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549. https://doi.org/10.1093/molbev/msy096
  14. Lee, M.-H. and Bostock, R. M. 2006. Agrobacterium T-DNAmediated integration and gene replacement in the brown rot pathogen Monilinia fructicola. Curr. Genet. 49:309-322. https://doi.org/10.1007/s00294-006-0059-0
  15. Liu, X., Cai, Y., Zhang, X., Zhang, H., Zheng, X. and Zhang, Z. 2016. Carbamoyl phosphate synthetase subunit MoCpa2 affects development and pathogenicity by modulating arginine biosynthesis in Magnaporthe oryzae. Front. Microbiol. 7:2023. https://doi.org/10.3389/fmicb.2016.02023
  16. Liu, Y.-G. and Chen, Y. 2007. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43:649-650, 652, 654, 656. https://doi.org/10.2144/000112601
  17. Medeiros, L. V., Maciel, D. B., Medeiros, V. V., Houllou Kido, L. M. and Oliveira, N. T. 2010. pelB gene in isolates of Colletotrichum gloeosporioides from several hosts. Genet. Mol. Res. 9:661-673. https://doi.org/10.4238/vol9-2gmr725
  18. Mitchell, A., Chang, H. Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., McAnulla, C., McMenamin, C., Nuka, G., Pesseat, S., Sangrador-Vegas, A., Scheremetjew, M., Rato, C., Yong, S. Y., Bateman, A., Punta, M., Attwood, T. K., Sigrist, C. J., Redaschi, N., Rivoire, C., Xenarios, I., Kahn, D., Guyot, D., Bork, P., Letunic, I., Gough, J., Oates, M., Haft, D., Huang, H., Natale, D. A., Wu, C. H., Orengo, C., Sillitoe, I., Mi, H., Thomas, P. D. and Finn, R. D. 2015. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 43(Database issue 1):D213-D221. https://doi.org/10.1093/nar/gku1243
  19. Namiki, F., Matsunaga, M., Okuda, M., Inoue, I., Nishi, K., Fujita, Y. and Tsuge, T. 2001. Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol. Plant-Microbe Interact. 14:580-584. https://doi.org/10.1094/MPMI.2001.14.4.580
  20. Negredo, A., Monteoliva, L., Gil, C., Pla, J. and Nombela, C. 1997. Cloning, analysis and one-step disruption of the ARG5,6 gene of Candida albicans. Microbiology (Reading) 143:297-302. https://doi.org/10.1099/00221287-143-2-297
  21. Nesher, I., Minz, A., Kokkelink, L., Tudzynski, P. and Sharon, A. 2011. Regulation of pathogenic spore germination by CgRac1 in the fungal plant pathogen Colletotrichum gloeosporioides. Eukaryot. Cell 10:1122-1130. https://doi.org/10.1128/EC.00321-10
  22. Petersen, T. N., Brunak, S., von Heijne, G. and Nielsen, H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8:785-786. https://doi.org/10.1038/nmeth.1701
  23. Pierard, A. and Schroter, B. 1978. Structure-function relationships in the arginine pathway carbamoylphosphate synthase of Saccharomyces cerevisiae. J. Bacteriol. 134:167-176. https://doi.org/10.1128/jb.134.1.167-176.1978
  24. Prusky, D. and Lichter, A. 2007. Mechanisms modulating fungal attack in post-harvest pathogen interactions and their control. In: Sustainable disease management in a European context, eds. by D. B. Collinge, L. Munk and B. M. Cooke, pp. 281-289. Springer, Dordrecht, Netherlands.
  25. Raushel, F. M., Thoden, J. B. and Holden, H. M. 1999. The amidotransferase family of enzymes: molecular machines for the production and delivery of ammonia. Biochemistry 38:7891- 7899. https://doi.org/10.1021/bi990871p
  26. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  27. Sambrook, J. F. and Russell, D. W. 2001. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. 2100 pp.
  28. Sutton, T. B. and Sanhueza, R. M. 1998. Necrotic leaf blotch of golden delicious-glomerella leaf spot: a resolution of common names. Plant Dis. 82:267-268. https://doi.org/10.1094/PDIS.1998.82.3.267
  29. Takahara, H., Huser, A. and O'Connell, R. 2012. Two arginine biosynthesis genes are essential for pathogenicity of Colletotrichum higginsianum on Arabidopsis. Mycology 3:54-64.
  30. Tan, Q., Zhao, X., He, H., Zhang, J. and Yi, T. 2021. Carbamoyl phosphate synthetase subunit Cpa1 interacting with Dut1, controls development, arginine biosynthesis, and pathogenicity of Colletotrichum gloeosporioides. Fungal Biol. 125:184-190. https://doi.org/10.1016/j.funbio.2020.10.009
  31. Thompson, J. D., Gibson, T. J. and Higgins, D. G. 2002. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinformatics 2:2.3.1-2.3.22.
  32. Velho, A. C., Alaniz, S., Casanova, L., Mondino, P. and Stadnik, M. J. 2015. New insights into the characterization of Colletotrichum species associated with apple diseases in southern Brazil and Uruguay. Fungal Biol. 119:229-244. https://doi.org/10.1016/j.funbio.2014.12.009
  33. Wang, C. X., Zhang, Z. F., Li, B. H., Wang, H. Y. and Dong, X. L. 2012. First report of Glomerella leaf spot of apple caused by Glomerella cingulata in China. Plant Dis. 96:912.
  34. Wu, G., Bazer, F. W., Davis, T. A., Kim, S. W., Li, P., Marc Rhoads, J., Carey Satterfield, M., Smith, S. B., Spencer, T. E. and Yin, Y. 2009. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153-168. https://doi.org/10.1007/s00726-008-0210-y
  35. Wu, J., Ji, Z., Wang, N., Chi, F., Xu, C., Zhou, Z. and Zhang, J. 2016. Identification of conidiogenesis-associated genes in Colletotrichum gloeosporioides by Agrobacterium tumefaciens-mediated transformation. Curr. Microbiol. 73:802-810. https://doi.org/10.1007/s00284-016-1131-8
  36. Xu, X., Wang, Y., Tian, C. and Liang, Y. 2016. The Colletotrichum gloeosporioides RhoB regulates cAMP and stress response pathways and is required for pathogenesis. Fungal Genet. Biol. 96:12-24. https://doi.org/10.1016/j.fgb.2016.09.002
  37. Zhang, C., Wang, Y., Wang, J., Zhai, Z., Zhang, L., Zheng, W., Zheng, W., Yu, W., Zhou, J., Lu, G., Shim, W.-B. and Wang, Z. 2013. Functional characterization of Rho family small GTPases in Fusarium graminearum. Fungal Genet. Biol. 61:90-99. https://doi.org/10.1016/j.fgb.2013.09.001
  38. Zhang, J.-X., Wu, Y.-X., Ho, H., Zhang, H., He, P.-F. and He, Y.-Q. 2014. BZcon1, a SANT/Myb-type gene involved in the conidiation of Cochliobolus carbonum. G3 (Bethesda) 4:1445-1453. https://doi.org/10.1534/g3.114.012286
  39. Zhang, Y., Shi, H., Liang, S., Ning, G., Xu, N., Lu, J., Liu, X. and Lin, F. 2015. MoARG1, MoARG5,6 and MoARG7 involved in arginine biosynthesis are essential for growth, conidiogenesis, sexual reproduction, and pathogenicity in Magnaporthe oryzae. Microbiol. Res. 180:11-22. https://doi.org/10.1016/j.micres.2015.07.002
  40. Zhou, Z., Wu, J., Wang, M. and Zhang, J. 2017. ABC protein CgABCF2 is required for asexual and sexual development, appressorial formation and plant infection in Colletotrichum gloeosporioides. Microb. Pathogen. 110:85-92. https://doi.org/10.1016/j.micpath.2017.06.028