• 제목/요약/키워드: biocatalysts

검색결과 62건 처리시간 0.027초

Enzymatic Production of Structured Lipids from Capric Acid and Conjugated Linoleic Acid in Soybean Oil

  • Shin, Jung-Ah;Lee, Ki-Teak
    • 한국식품저장유통학회:학술대회논문집
    • /
    • 한국식품저장유통학회 2003년도 제23차 추계총회 및 국제학술심포지움
    • /
    • pp.164.1-164
    • /
    • 2003
  • In this study, medium-chain fatty acid (MCFA) metabolized in the liver for quick energy and CLA exhibited biological activity were used for synthesis of structured lipids (SLs). SLs were synthesized by acidolysis of soybean oil, capric acid (C10:0) and CLA with Chirazyme L-2 lipase as biocatalysts. The effect of enzyme load (2, 4, 6, 8, 10% w/w substrates) was investigated. Production of SL (scale-up) was performed with a 1:2:2 molar ratio (oi1/C10:0/CLA) for 24 h at 55$^{\circ}C$ in a stirred batch reactor (420 rpm). The reaction was catalyzed by Chirazyme L-2 lipase (24.48g, 4% w/w substrates). The scale-up result showed that capric acid and total CLA were incorporated 4.9%, 4.1% (mole%), respectively, in soybean oil. Then, physio-chemical property and flavor characteristic of produced SL-soybean oil were analyzed. Therefore, SL-soybean oil containing C10:0 and CLA was successfully synthesized and may be beneficial in desirable food and nutritional applications.

  • PDF

Immobilized Saccharomyces cerevisia의 반응특성에 관한 연구 (Studies on the Reactive Characteristics of Immobilized Saccharomyces cerevisia in Ethanol Production)

  • 김성기
    • 한국환경보건학회지
    • /
    • 제18권1호
    • /
    • pp.84-94
    • /
    • 1992
  • In an attempt to develop the immobilized biocatalysts based on immobilized Saccharomyces cerevisiae, immobilized yeast was investigated with respect to the conditions affected to ethanol productivities. Saccharomyces cerevisiae was immobilized in the form of the beads by magnetic-calcium alginate, non magnetic-calcium alginate and acrylamide polymerization. Magnetic immobilized yeast, nonmagnetic immobilized yeast and polyacrylamide immobilized yeast were compared in respect of their pH stability, thermostability, heat tolerance, the relation between the concetration of native yeast and retained activity of immobilized yeast, the activity depending on bead size of immobilized yeast, and the effects of magnesium and cobalt on the activities. The more small bead had retained the higher activity for the three kinds of immobilized yeast. In case of 1.0mm diameter of beads, the retained activity was 40~50% for the all groups. The pH stability profile for the immobilized yeast showed a broad range of optimun activity while the native yeast gave a sharp pick for its optimun pH value. The thermostability was at the range of 25~55$^{\circ}$C for the immobilized yeast groups. It was investigated that the influent magnesium and cobalt concentration, and the relative activity have an influent on heat tolerance at steady state. Both protein content released from immobilized yeast and activity of immobilized yeast were changed after activation of immobilized yeast cell.

  • PDF

Biotransformation of (-)-α-Pinene by Whole Cells of White Rot Fungi, Ceriporia sp. ZLY-2010 and Stereum hirsutum

  • Lee, Su-Yeon;Kim, Seon-Hong;Hong, Chang-Young;Kim, Ho-Young;Ryu, Sun-Hwa;Choi, In-Gyu
    • Mycobiology
    • /
    • 제43권3호
    • /
    • pp.297-302
    • /
    • 2015
  • Two white rot fungi, Ceriporia sp. ZLY-2010 (CER) and Stereum hirsutum (STH) were used as biocatalysts for the biotransformation of (-)-${\alpha}$-pinene. After 96 hr, CER converted the bicyclic monoterpene hydrocarbon (-)-${\alpha}$-pinene into ${\alpha}$-terpineol (yield, 0.05 g/L), a monocyclic monoterpene alcohol, in addition to, other minor products. Using STH, verbenone was identified as the major biotransformed product, and minor products were myrtenol, camphor, and isopinocarveol. We did not observe any inhibitory effects of substrate or transformed products on mycelial growth of the fungi. The activities of fungal manganese-dependent peroxidase and laccase were monitored for 15 days to determine the enzymatic pathways related to the biotransformation of (-)-${\alpha}$-pinene. We concluded that a complex of enzymes, including intra- and extracellular enzymes, were involved in terpenoid biotransformation by white rot fungi.

재구성 지질의 효소적 생산과 산업적 이용 (Enzymatic production and industrial application of structured lipids)

  • 이수정;송예진;이정은;최은지;김병희
    • 식품과학과 산업
    • /
    • 제51권2호
    • /
    • pp.148-156
    • /
    • 2018
  • Structured lipids are lipids in which the composition and/or positional distribution of fatty acids have been chemically or enzymatically modified from their natural biosynthetic form. Because structured lipids have desired nutritional, physicochemical, textural or physiological properties for applications in processed foods, functional foods, or nutraceuticals, many research activities have been aimed at their commercialization. The enzymatic production of structured lipids using lipases as the biocatalysts has a big potential in the future market due to the specificity or selectivity of the lipases. This article introduced some examples of specialty structured lipids that have been enzymatically produced and have been utilized as commercialized products. The commercialized products include medium- and long-chain triacylglycerols, human milk fat substitutes, cocoa butter equivalents, trans-free plastic fats, low-calorie fats/oils, and health-beneficial fatty acid-rich oils.

Surface Display of Heme- and Diflavin-Containing Cytochrome P450 BM3 in Escherichia coli: A Whole-Cell Biocatalyst for Oxidation

  • Yim, Sung-Kun;Kim, Dong-Hyun;Jung, Heung-Chae;Pan, Jae-Gu;Kang, Hyung-Sik;Ahn, Tae-Ho;Yun, Chul-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권4호
    • /
    • pp.712-717
    • /
    • 2010
  • Cytochrome P450 enzymes (P450s) are involved in the synthesis of a wide variety of valuable products and in the degradation of numerous toxic compounds. The P450 BM3 (CYP102A1) from Bacillus megaterium was the first P450 discovered to be fused to its redox partner, a mammalian-like diflavin reductase. Here, we report the development of a whole-cell biocatalyst using ice-nucleation protein (Inp) from Pseudomonas syringae to display a hemeand diflavin-containing oxidoreductase, P450 BM3 (a single, 119-kDa polypeptide with domains of both an oxygenase and a reductase) on the surface of Escherichia coli. The surface localization and functionality of the fusion protein containing P450 BM3 were verified by flow cytometry and measurement of enzymatic activities. The results of this study comprise the first report of microbial cell-surface display of a heme- and diflavin-containing enzyme. This system should allow us to select and develop oxidoreductases containing heme and/or flavins into practically useful whole-cell biocatalysts for extensive biotechnological applications, including selective synthesis of new chemicals and pharmaceuticals, bioconversion, bioremediation, live vaccine development, and biochip development.

생체모방공학을 이용한 bovine carbonic anhydrase를 SBA-15에 고정화하여 이산화탄소분리와 재구성된 $CaCO_3$ 연구 (Biomimetic sequestration of $CO_2$ and reformation to $CaCO_3$ using bovine carbonic anhydrase immobilized on SBA-15)

  • ;김대훈;임경수;정순관
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2010년도 추계학술발표논문집 1부
    • /
    • pp.495-499
    • /
    • 2010
  • The biocatalytic capture of $CO_2$, and its precipitationas $CaCO_3$, over bovine carbonic anhydrase (BCA) immobilized on a pore-expanded SBA-15 support was investigated. SBA-15 was synthesized using TMB as a pore expander, and the resulting porous silica was characterized by XRD, BET, IR, and FE-SEM analysis. BCA was immobilized on SBA-15 through various approaches, including covalent attachment (BCA-CA), adsorption (BCA-ADS), and cross-linked enzyme aggregation (BCA-CLEA). The immobilization of BCA on SBA-15 was confirmed by the presence of zinc metal in the EDXS analysis. The effects of pH, temperature, storage stability, and reusability on the biocatalytic performance of BCA were characterized by examining para-nitrophenyl acetate (p-NPA) hydrolysis. The $K_{cat}/K_m$ values for p-NPA hydrolysis were 740.05, 660.62, and $680.11M^{-1}s^{-1}$, respectively, where as $K_{cat}/K_m$ for free BCA was $873.76M^{-1}s^{-1}$. The amount of $CaCO_3$ precipitate was measured quantitatively using anion-selective electrode and was found to be 12.41, 11.82, or 11.28 mg $CaCO_3$/mg for BCA-CLEA, BCA-ADS, or BCA-CA, respectively. The present results indicate that the immobilized BCA-CLEA, BCA-ADS, and BCA-CA are green materials, and are tunable, reusable, and promising biocatalysts for $CO_2$ sequestration.

  • PDF

Application of Solanum lycopersicum Glucose-6-phosphate Dehydrogenase to NADPH-generating System for Cytochrome P450 Reactions

  • Park, Chan Mi;Jeong, Heon;Ma, Sang Hoon;Kim, Hyun Min;Joung, Young Hee;Yun, Chul-Ho
    • 한국미생물·생명공학회지
    • /
    • 제47권4호
    • /
    • pp.536-545
    • /
    • 2019
  • Cytochrome P450 (P450 or CYP) is involved in the metabolism of endogenous and exogenous compounds in most organisms. P450s have great potential as biocatalysts in the pharmaceutical and fine chemical industries because they catalyze diverse oxidative reactions using a wide range of substrates. The high-cost nicotinamide cofactor, NADPH, is essential for P450 reactions. Glucose-6-phosphate dehydrogenase (G6PDH) has been commonly used in NADPH-generating systems (NGSs) to provide NADPH for P450 reactions. Currently, only two G6PDHs from Leuconostoc mesenteroides and Saccharomyces cerevisiae can be obtained commercially. To supply high-cost G6PDH cost-effectively, we cloned the cytosolic G6PDH gene of Solanum lycopersicum (tomato) with 6xHis tag, expressed it in Escherichia coli, and purified the recombinant G6PDH (His-G6PDH) using affinity chromatography. In addition, enzymatic properties of His-G6PDH were investigated, and the His-G6PDH-coupled NGS was optimized for P450 reactions. His-G6PDH supported CYP102A1-catalyzed hydroxylation of omeprazole and testosterone by NADPH generation. This result suggests that tomato His-G6PDH could be a cost-effective enzyme source for NGSs for P450-catalyzed reactions as well as other NADPH-requiring reactions.

Characterization of Two Metagenome-Derived Esterases That Reactivate Chloramphenicol by Counteracting Chloramphenicol Acetyltransferase

  • Tao, Weixin;Lee, Myung-Hwan;Yoon, Mi-Young;Kim, Jin-Cheol;Malhotra, Shweta;Wu, Jing;Hwang, Eul-Chul;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권12호
    • /
    • pp.1203-1210
    • /
    • 2011
  • Function-driven metagenomic analysis is a powerful approach to screening for novel biocatalysts. In this study, we investigated lipolytic enzymes selected from an alluvial soil metagenomic library, and identified two novel esterases, EstDL26 and EstDL136. EstDL26 and EstDL136 reactivated chloramphenicol from its acetyl derivates by counteracting the chloramphenicol acetyltransferase (CAT) activity in Escherichia coli. These two enzymes showed only 27% identity in amino acid sequence to each other; however both preferentially hydrolyzed short-chain p-nitrophenyl esters (${\leq}C_5$) and showed mesophilic properties. In vitro, EstDL136 catalyzed the deacetylation of 1- and 3-acetyl and 1,3-diacetyl derivates; in contrast, EstDL26 was not capable of the deacetylation at $C_1$, indicating a potential regioselectivity. EstDL26 and EstDL136 were similar to microbial hormone-sensitive lipase (HSL), and since chloramphenicol acetate esterase (CAE) activity was detected from two other soil esterases in the HSL family, this suggests a distribution of CAE among the soil microorganisms. The isolation and characterization of EstDL26 and EstDL136 in this study may be helpful in understanding the diversity of CAE enzymes and their potential role in releasing active chloramphenicol in the producing bacteria.

Optimization of Direct Lysine Decarboxylase Biotransformation for Cadaverine Production with Whole-Cell Biocatalysts at High Lysine Concentration

  • Kim, Hyun Joong;Kim, Yong Hyun;Shin, Ji-Hyun;Bhatia, Shashi Kant;Sathiyanarayanan, Ganesan;Seo, Hyung-Min;Choi, Kwon Young;Yang, Yung-Hun;Park, Kyungmoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1108-1113
    • /
    • 2015
  • Cadaverine (1,5-diaminopentane) is an important industrial chemical with a wide range of applications. Although there have been many efforts to produce cadaverine through fermentation, there are not many reports of the direct cadaverine production from lysine using biotransformation. Whole-cell reactions were examined using a recombinant Escherichia coli strain overexpressing the E. coli MG1655 cadA gene, and various parameters were investigated for the whole-cell bioconversion of lysine to cadaverine. A high concentration of lysine resulted in the synthesis of pyridoxal-5'-phosphate (PLP) and it was found to be a critical control factor for the biotransformation of lysine to cadaverine. When 0.025 mM PLP and 1.75 M lysine in 500 mM sodium acetate buffer (pH6) were used, consumption of 91% lysine and conversion of about 80% lysine to cadaverine were successfully achieved.

Biocatalytic Production of Glucosamine from N-Acetylglucosamine by Diacetylchitobiose Deacetylase

  • Jiang, Zhu;Lv, Xueqin;Liu, Yanfeng;Shin, Hyun-dong;Li, Jianghua;Du, Guocheng;Liu, Long
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1850-1858
    • /
    • 2018
  • Glucosamine (GlcN) is widely used in the nutraceutical and pharmaceutical industries. Currently, GlcN is mainly produced by traditional multistep chemical synthesis and acid hydrolysis, which can cause severe environmental pollution, require a long prodution period but a lower yield. The aim of this work was to develop a whole-cell biocatalytic process for the environment-friendly synthesis of glucosamine (GlcN) from N-acetylglucosamine (GlcNAc). We constructed a recombinant Escherichia coli and Bacillus subtilis strains as efficient whole-cell biocatalysts via expression of diacetylchitobiose deacetylase ($Dac_{ph}$) from Pyrococcus furiosus. Although both strains were biocatalytically active, the performance of B. subtilis was better. To enhance GlcN production, optimal reaction conditions were found: B. subtilis whole-cell biocatalyst 18.6 g/l, temperature $40^{\circ}C$, pH 7.5, GlcNAc concentration 50 g/l and reaction time 3 h. Under the above conditions, the maximal titer of GlcN was 35.3 g/l, the molar conversion ratio was 86.8% in 3-L bioreactor. This paper shows an efficient biotransformation process for the biotechnological production of GlcN in B. subtilis that is more environmentally friendly than the traditional multistep chemical synthesis approach. The biocatalytic process described here has the advantage of less environmental pollution and thus has great potential for large-scale production of GlcN in an environment-friendly manner.