• Title/Summary/Keyword: bio-ion

Search Result 333, Processing Time 0.026 seconds

Physiological Response of Chinese Cabbage to Salt Stress (염 스트레스에 대한 배추의 생리학적 반응)

  • Kim, Ju-Sung;Shim, Ie-Sung;Kim, Myong-Jo
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.343-352
    • /
    • 2010
  • In order to understand the plant responses to salt stress (0, 50, and 100 mM NaCl), Chinese cabbage seedlings grown up to two leaf stages by hydroponic culture were used. Fresh and dry weight, chlorophyll (Chl), antioxidant materials, polyamine content, antioxidant enzyme activities, and inorganic ion level were evaluated. Fresh and dry weights of Chinese cabbage increased with the increase in salinity while the optimal growth occurred at 50 mM NaCl. The Chl a, total Chl, carotenoid content, and Chl a/b ratio increased by the 6 days after treatment with 100 mM NaCI; however, the Chl b content decreased. Glutathione increased in the root of Chinese cabbage for 6 days. Dehydroascorbate increased remarkably by day 6 caused by the salt stress in both leaf and the root. While ascorbate peroxidase increased, the activity of catalase and glutathione reductase decreased gradually in the first leaf for 6 days. The $Na^+$ content increased by 12.5-fold in the 3 days after treatment with 100 mM NaCI in the shoot, whereas the $Ca^{2+}$, $K^+$, and $Mg^{2+}$ content measured in the same treatment decreased by 43 to 57%. Spermidine content decreased as salinity increased, but spermine content increased. The growth promotion, glutathione and ascorbic acid content in Chinese cabbage were increased by low salt stress, and shortening of the cultivation period for growth increase of Chinese cabbage is expected.

Evaluation of Toxicity of Heavy Metals and Surfactants Using Vibrio Fischeri and Daphnia Magna (발광박테리아(Vibrio fischeri)와 물벼룩(Daphnia magna)을 이용한 중금속 및 계면활성제의 혼합독성 평가)

  • Paik, Dohyeon;Lee, Narae;Lee, Sangmin;Hong, Sungchul
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.429-437
    • /
    • 2018
  • In this study, the mixed toxicity of heavy metals (Cu, Pb, Hg) and surfactants (SLS, ALS) was evaluated by using Vibrio fischeri and Daphnia magna. The sensitivity of ecotoxicity to heavy metals was sensitive to daphnia but the case of surfactants were more sensitive to Vibrio fischeri. Experimental results of Vibrio fischeri show that the toxicity value P(O) was lower than the predicted value P(E), and the antagonistic effect was observed when the heavy metal and the surfactant were mixed. It seems that SLS and ALS, which are anionic surfactants, have anionic form on the hydrophilic head, so that they have an antagonistic effect that they are bonded with heavy metal ion which is a cation type and the actual toxicity is lowered. In Daphnia magna, the results showed that antagonistic, additive and synergistic effects were in order as concentrations increased. As the concentration increases, Daphnia magna, which is highly sensitive to heavy metals, seems to have a synergistic effect with a rapid increase in mortality.

Preparation of Protein Adsorptive Anion Exchange Membrane Based on Porous Regenerated Cellulose Support for Membrane Chromatography Application (단백질 흡착성을 갖는 막 크로마토그래피용 재생 셀룰로오스 기반 음이온 교환 다공성 분리막의 제조)

  • Seo, Jeong-Hyeon;Lee, Hong-Tae;Kim, Tae-Kyung;Cho, Young-Hoon;Oh, Taek-Keun;Park, HoSik
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.348-356
    • /
    • 2022
  • With the development of the bio industry, membrane chromatography with a high adsorption efficiency is emerging to replace the existing column chromatography used in the downstream processes of pharmaceuticals, food, etc. In this study, through the deacetylation reaction of two commercial cellulose acetate (CA) membranes with different pore sizes, the porous regenerated cellulose (RC) supports for membrane chromatography were obtained to attach the anion exchange ligands. The adsorptive membranes for anion exchange were prepared by attaching an anion exchange ligand ([3-(methacryloylamino) propyl] trimethylammonium chloride) containing quaternary ammonium groups on the RC supports by grafting and UV polymerization. The protein adsorption capacities of the prepared membranes were obtained through both the static binding capacity (SBC) and the dynamic adsorption capacity (DBC) measurement. As a result, the membrane chromatography with the smaller the pore size, the larger the surface area showed the highest protein adsorption capacity. Membrane chromatography which was prepared by using deacetylated commercial CA support with MAPTAC ligand (i.e., RC 0.8 + MAPTAC: 43.69 mg/ml, RC 3.0 + MAPTAC: 36.33 mg/ml) showed a higher adsorption capacity compared to commercial membrane chromatography (28.38 mg/ml).

Fabrication of Hierarchical Nanostructures Using Vacuum Cluster System

  • Lee, Jun-Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.389-390
    • /
    • 2012
  • In this study, we fabricate a superhydrophobic surface made of hierarchical nanostructures that combine wax crystalline structure with moth-eye structure using vacuum cluster system and measure their hydrophobicity and durability. Since the lotus effect was found, much work has been done on studying self-cleaning surface for decades. The surface of lotus leaf consists of multi-level layers of micro scale papillose epidermal cells and epicuticular wax crystalloids [1]. This hierarchical structure has superhydrophobic property because the sufficiently rough surface allows air pockets to form easily below the liquid, the so-called Cassie state, so that the relatively small area of water/solid interface makes the energetic cost associated with corresponding water/air interfaces smaller than the energy gained [2]. Various nanostructures have been reported for fabricating the self-cleaning surface but in general, they have the problem of low durability. More than two nanostructures on a surface can be integrated together to increase hydrophobicity and durability of the surface as in the lotus leaf [3,5]. As one of the bio-inspired nanostructures, we introduce a hierarchical nanostructure fabricated with a high vacuum cluster system. A hierarchical nanostructure is a combination of moth-eye structure with an average pitch of 300 nm and height of 700 nm, and the wax crystalline structure with an average width and height of 200 nm. The moth-eye structure is fabricated with deep reactive ion etching (DRIE) process. $SiO_2$ layer is initially deposited on a glass substrate using PECVD in the cluster system. Then, Au seed layer is deposited for a few second using DC sputtering process to provide stochastic mask for etching the underlying $SiO_2$ layer with ICP-RIE so that moth-eye structure can be fabricated. Additionally, n-hexatriacontane paraffin wax ($C_{36}H_{74}$) is deposited on the moth-eye structure in a thermal evaporator and self-recrystallized at $40^{\circ}C$ for 4h [4]. All of steps are conducted utilizing vacuum cluster system to minimize the contamination. The water contact angles are measured by tensiometer. The morphology of the surface is characterized using SEM and AFM and the reflectance is measured by spectrophotometer.

  • PDF

Theoretical Calculations of Infrared Bands of CH3+ and CH5+

  • Matin, Mohammad A.;Jang, Joonkyung;Park, Seung Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2051-2055
    • /
    • 2013
  • Existing theoretical calculations predict that infrared spectra of the two most fundamental reactive carbo-ions, methyl cation $CH{_3}^+$ with $D_{3h}$ symmetry and protonated methyl cation $CH{_5}^+$ with $C_s(I)$, $C_s(II)$, and $C_{2v}$ symmetries, appear together in the 7-${\mu}m$ region corresponding to the C-H bending modes. Vibrational band profiles of $CH{_3}^+$ and $CH{_5}^+$ have been compared by ab initio calculation methods that use the basis sets of MP2/aug-cc-pVTZ and CCSD(T)/cc-pVTZ. Our results indicate that the bands of rotation-vibration transitions of $CH{_3}^+$ and $CH{_5}^+$ should overlap not only in the 3-${\mu}m$ region corresponding to the C-H stretching modes but also in the 7-${\mu}m$ region corresponding to the C-H bending modes. Five band intensities of $CH{_5}^+$ among fifteen vibrational transitions between 6 and 8 ${\mu}m$ region are stronger than those of the ${\nu}_2$ and ${\nu}_4$ bands in $CH{_3}^+$. Ultimate near degeneracy of the two bending vibrations ${\nu}_2$ and ${\nu}_4$ of $CH{_3}^+$along with the stronger intensities of $CH{_5}^+$ in the three hydrogen scrambling structures may cause extreme complications in the analysis of the high-resolution carbo-ion spectra in the 7-${\mu}m$ region.

Probing Organic Ligands and their Binding Schemes on Nanocrystals by Mass Spectrometric and FT-IR Spectroscopic Imaging

  • Son, Jin Gyeong;Choi, Eunjin;Piao, Yuanzhe;Han, Sang Woo;Lee, Tae Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.355-355
    • /
    • 2016
  • There has been an explosive development of nanocrystal (NC) synthesis and application due to their composition-dependent specific properties. Despite the composition, shape, and size of NCs foremost determine their physicochemical properties, the surface state and molecule conjugation also drastically change their characteristics. To make practical use of NCs, it is a prerequisite to understand the NC surface state and the degree to which they have been modified because the reaction occurs on the interface between the NCs and the surrounding medium. We report in here an analysis method to identify conjugated ligands and their binding states on semiconductor nanocrystals based on their molecular information. Surface science techniques, such as time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and FT-IR spectroscopy, are adopted based on the micro-aggregated sampling method. Typical trioctylphosphine oxide-based synthesis methods of CdSe/ZnS quantum dots (QDs) have been criticized because of the peculiar effects of impurities on the synthesis processes. Since the ToF-SIMS technique provides molecular composition evidence on the existence of certain ligands, we were able to clearly identify the n-octylphosphonic acid (OPA) as a surface ligand on CdSe/ZnS QDs. Furthermore, the complementary use of the ToF-SIMS technique with the FT-IR technique could reveals the OPA ligands' binding state as bidentate complexes.

  • PDF

Purification and Characterization of Glucosyltransferase and Fructosyltransferase in Leuconostoc mesenteroides NRRL B-1149 (Leuconostoc mesenteroides NRRL B-1149의 Glucosyltransferase와 Fructosyltransferase의 분리와 특성 연구)

  • Lee Jin Ha;Park Jun Seong;Lee Hee Sun;Kim Do Man
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.368-373
    • /
    • 2004
  • The optimal condition for the production of a glucan and a fructan synthesizing enzymes from Leuconostoc mesenteroides NRRL B-1149 were studied based on the different medium compositions. Response surface methodology was applied to find the optimistic condition showing the relationship between the fermentation response (enzyme activities) and the fermentation variable concentrations of yeast extract, peptone concentration, K2HP04 concentration and sucrose. Optimum medium composition for both enzymes production was $0.75\%$ yeast extract, $0.72\%$ peptone, $1\%$ K2HP04 and $2.17\%$ sucrose. Using this medium, the activities produced in culture was 0.90 U/m~ for glucosyltransferase (GTase) and 0.96 U/ml for fructosyltransferase (FTase). After purification of 1149FTase by consecutive chromatographies using Sephadex G-150 and DEAE-Sepharose, a 1149FTase of 210 kDa on $7\%$ polyacrylamide gel was isolated and it synthesized soluble fructan. The 1149GTase showed a band of 180 kDa on $8\%$ polyacrylamide gel after purification using Bio-Gel P-100 gel chromatography and DEAE-Sepharose ion exchange chromatography and it synthesized insoluble glucan. The linkages of polymers were determined by methylation using Hakomori reagent and following NMR analysis. The glucan was composed of a(1~6) and a(1~3) linkages and the fructan was levan.

Nano adhesion and Friction of $DDPO_{4}$ and $ODPO_{4}$ SAM coatings (DDPO$_{4}$$ODPO_{4}$ SAM 코팅의 나노 응착 및 마찰 특성 연구)

  • Yoon, Eui-Sung;Yang, Seung-Ho;Kong, Ho-Sung;Grigoriev, Andrei Ya
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.207-214
    • /
    • 2002
  • Nano adhesion between SPM (scanning probe microscope) tips and $DDPO_{4}$ (dodecylphosphoric acid ester) and $ODPO_{4}$ (octadecylphosphoric acid ester) SAM (self-assembled monolayer) was experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes with the applied normal load. $DDPO_{4}$ and $ODPO_{4}$ SAM were formed on TiMe and TiOx surfaces. TiMe and TiOx were coated on the Si wafer by ion sputtering. Adhesion and friction of $DDPO_{4}$ and $ODPO_{4}$ SAM surfaces were compared with those of OTS (octadecyltrichlorosilane) SAM and DLC surfaces. $DDPO_{4}$ and $ODPO_{4}$ SAM converted the TiMe and TiOx surfaces to be hydrophobic. When the surface was hydrophobic, the adhesion and friction forces were found lower than those of bare surfaces. Work of adhesion was also discussed to explain how the surface was converted into hydrophobic. Results also showed that tribological characteristics of $DDPO_{4}$ and $ODPO_{4}$ had good properties in the adhesion, friction, wetting angle and work of adhesion. $DDPO_{4}$ and $ODPO_{4}$ SAM could be one of the candidates for the bio-MEMS elements.

  • PDF

Purification and Characterization of Natural Antifungal Protein from Astragal Seeds (Astragalus membranaceus L.). (황기 종자의 천연 항진균성 단백질의 분리정제 및 특성검정)

  • 구본성;류진창;정태영;김교창
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.379-386
    • /
    • 1998
  • Deterioration of food is in general caused by the presence of microorganisms and chemical compounds of food itself. There exists antimicrobial compound in the food, however, addition of food antiseptics, additives, or physico-chemical processing is a common practice. The safety of artificial chemical antiseptics became a serious public concern, therefore, new natural antiseptic compounds are in need to be developed. We have isolated a new natural antifungal protein (KBS-B2) from Astragal seed through ammonium sulfate precipitation and column chromatography using FPLC Mono-S and Superose 12HR. The purified protein inhibited growth of Candida albicans, and spore germination of food spoiling fungi such as Aspergillus ochraceus, Penicillium expensum, P. digitatum and Botrytis cineria. Antifungal effect of the KBS-B2 protein could be directly assayed by bioautography overlaying the fungal spores on the electrophoresed acrylamide gel. The comparison of N-terminal amino acid sequences of the KBS-B2 with known antifungal protein revealed that had 50% homology to thaumatin and zeamatin like proteins.

  • PDF

Isolation and Biological Properties of Novel Cell Cycle Inhibitor, HY558, Isolated from Penicillium minioluteum F558

  • Lee, Chul-Hoon;Lim, Hae-Young;Kim, Min-Kyoung;Cho, Youl-Hee;Oh, Deok-Kun;Kim, Chang-Jin;Lim, Yoon-Gho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.470-475
    • /
    • 2002
  • In the course of screening for a novel cell cycle inhibitor, a potent Cdk 1 inhibitor, HY558, was found from the culture broth of Penicillium minioluteum F558 isolated from a soil sample. The molecular ion of HY558 was identified at m/z 329 (MH+) with a molecular formula of $C_20H_44ON_2$. HY558 exhibited selective antiproliferative effects on various human cancer cell lines. Its $IC_50$ values were estimated to be 0.29 mM on HepG2, 0.30 mM on HeLa, 0.30 mM on HL6O, 0.33 mM on HT-29, and 0.25 mM on AGS cells. Interestingly, Hy558 demonstrated no antiproliferative effect with normal lymphocytes used as the control, and a low level of inhibition on the proliferation of A549 cancer cells. A flow cytometric analysis of HepG2 cells revealed an appreciable arrest of cells at the G1 and G2/M phases of the cell cycle following treatment with Hy558. furthermore, DNA fragmentation due to apoptosis was observed in HeLa cells treated with 0.46 mM of HY558.