Physiological Response of Chinese Cabbage to Salt Stress

염 스트레스에 대한 배추의 생리학적 반응

  • Kim, Ju-Sung (Oriental Bio-herb Research Institute, Kangwon National University) ;
  • Shim, Ie-Sung (Department of Environmental Horticulture, University of Seoul) ;
  • Kim, Myong-Jo (Oriental Bio-herb Research Institute, Kangwon National University)
  • 김주성 (강원대학교 한방Bio연구소) ;
  • 심이성 (서울시립대학교 환경원예학과) ;
  • 김명조 (강원대학교 한방Bio연구소)
  • Received : 2009.10.23
  • Accepted : 2009.12.19
  • Published : 2010.06.30

Abstract

In order to understand the plant responses to salt stress (0, 50, and 100 mM NaCl), Chinese cabbage seedlings grown up to two leaf stages by hydroponic culture were used. Fresh and dry weight, chlorophyll (Chl), antioxidant materials, polyamine content, antioxidant enzyme activities, and inorganic ion level were evaluated. Fresh and dry weights of Chinese cabbage increased with the increase in salinity while the optimal growth occurred at 50 mM NaCl. The Chl a, total Chl, carotenoid content, and Chl a/b ratio increased by the 6 days after treatment with 100 mM NaCI; however, the Chl b content decreased. Glutathione increased in the root of Chinese cabbage for 6 days. Dehydroascorbate increased remarkably by day 6 caused by the salt stress in both leaf and the root. While ascorbate peroxidase increased, the activity of catalase and glutathione reductase decreased gradually in the first leaf for 6 days. The $Na^+$ content increased by 12.5-fold in the 3 days after treatment with 100 mM NaCI in the shoot, whereas the $Ca^{2+}$, $K^+$, and $Mg^{2+}$ content measured in the same treatment decreased by 43 to 57%. Spermidine content decreased as salinity increased, but spermine content increased. The growth promotion, glutathione and ascorbic acid content in Chinese cabbage were increased by low salt stress, and shortening of the cultivation period for growth increase of Chinese cabbage is expected.

염 스트레스(0, 50, 100mM NaCl)에 의한 식물 반응을 이해하기 위하여, 본 실험은 수경법으로 2엽기까지 기른 배추를 이용하였다. 신선중과 건물중, 엽록소, 항산화 물질, 폴리아민함량, 항산화 효소 활성, 그리고 이온 레벨을 조사하였다. 배추의 생체중 및 건물중은 염의 증가에 따라 증가하였으며, 50mM NaCl 처리시 최적의 성장을 보였다. Chl a, total Chl, carotenoid 함량과 Chl a/b 비는 100mM NaCI 처리후 6일째 증가하였으나, Chl b 함량은 감소하였다. 글루타치온 함량은 염처리 후 6일째 뿌리에서 증가하였으며, dehydroascorbate는 6일째 잎과 뿌리에서 현저하게 증가하였다. 염처리후 6일째 잎에서, ascorbate peroxidase 활성은 증가하였으나, catalase와 glutathione reductase 활성은 감소하였다. 지상부에 100mM NaCI 처리후 3일째, $Na^+$ 함량은 12.5배 증가하였으나, $Ca^{2+}$, $K^+$$Mg^{2+}$ 함량은 43-57% 감소하였다. 또한 염 스트레스에 의한 스페르미딘 감소 현상과 스페르민 증가현상을 나타내었다. 50mM NaCl 처리에 의해 배추의 생장 촉진, 글루타치온 및 비타민 C 함량 증가 현상이 나타났으며, 또한 식물의 생장 촉진에 의한 재배 기간의 단축효과도 기대된다.

Keywords

References

  1. Agastian, P., S.J. Kingsley, and M. Vivekanandan. 2000. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38:287-290. https://doi.org/10.1023/A:1007266932623
  2. Alexieva, V., I. Sergiev, S. Mapelli, and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environ. 24: 1337-1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x
  3. Alscher, R.G., J.L. Donahue, and C.L. Cramer. 1997. Reactive oxygen species and antioxidants: relationships in green cells. Physiol. Plant 100:224-233. https://doi.org/10.1111/j.1399-3054.1997.tb04778.x
  4. Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:601-639. https://doi.org/10.1146/annurev.arplant.50.1.601
  5. Bowler, C., M. van Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Mol. Biol. 43:83-116. https://doi.org/10.1146/annurev.pp.43.060192.000503
  6. Bradford, M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  7. Chappele, E.W., M.S. Kim, and J.E. McMurtrey. 1992. Ratio analysis of reflectance spectra (RARS): an algorithm for remote estimation of the concentration of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sens. Environ. 39:239-247. https://doi.org/10.1016/0034-4257(92)90089-3
  8. Chartzoulakis, K. and G. Klapaki. 2000. Response of two green house pepper hybrids to NaCl salinity during different growth stages. Sci. Hort. 86:247-260. https://doi.org/10.1016/S0304-4238(00)00151-5
  9. Cramer, G.R., J. Lynch, A. Lauchli, and V.S. Polito. 1987. Influx of $Na^{+}$, $K^{+}$ and $Ca^{2+}$ into roots of salt-stressed cotton seedlings. effects of supplemental $Ca^{2+}$. Plant Physiol. 83:510-516. https://doi.org/10.1104/pp.83.3.510
  10. Flores, H.E. 1991. Changes in polyamine metabolism in response to abiotic stress, p. 213-228. In: R.M. Slocum and H.E. Flores (eds.). Biochemistry and physiology of polyamines plants. CRC Press, Boca Raton, FL.
  11. Fox, T.C. and M.L. Guerinot. 1998. Molecular biology of cation transport in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:669-696. https://doi.org/10.1146/annurev.arplant.49.1.669
  12. Foyer, C.H., H. Lopez-Delgado, J.F. Dat, and I.M. Scott. 1997. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiol. Plant. 100:241-254. https://doi.org/10.1111/j.1399-3054.1997.tb04780.x
  13. Gossett, D.R., E.P. Millhollon, and M.C. Lucas. 1994. Antioxidant response to NaCl stress in salt tolerant and salt sensitive cultivars of cotton. Crop Sci. 34:706-714. https://doi.org/10.2135/cropsci1994.0011183X003400030020x
  14. Gronwald, J.W., E.P. Fuerst, C.V. Eberlein, and M.A. Egli. 1987. Effect of herbicide antidotes on glutathione concentration and glutathione S-transferase activity of sorghum shoots. Pestic. Biochem. Physiol. 29:66-76. https://doi.org/10.1016/0048-3575(87)90085-X
  15. Heath, R. and L. Packer. 1968. Photoperoxidation in isolated chloroplast I. Kinetics and stoichimetry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189-198. https://doi.org/10.1016/0003-9861(68)90654-1
  16. Hernandez, J.A., M.A. Ferrer., A. Jimenez, A.R. Barcelo, and F. Sevilla. 2001. Antioxidant systems and $O_{2}{\cdot}-/H_{2}O_{2}$ production in the apoplast of pea leaves: its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 127:817-831. https://doi.org/10.1104/pp.010188
  17. Jeschke, W.D., J.S. Pate, and C.A. Atkins. 1987. Partitioning of $K^{+}, Na^{+}, Mg^{2+}$, and $Ca^{2+}$ through xylem and phloem component organs and nodulated white lupin under mild salinity. J. Plant Physiol. 128:77-93. https://doi.org/10.1016/S0176-1617(87)80183-9
  18. Khan, M.A. 2001. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Aquat. Bot. 70:259-268. https://doi.org/10.1016/S0304-3770(01)00160-7
  19. Khan, M.A., I.A. Ungar, and A.M. Showalter. 2000. Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Commun. Soil Sci. Plant Anal. 31:2763-2774. https://doi.org/10.1080/00103620009370625
  20. Khavarinejad, R.A. and Y. Mostofi. 1998. Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica 35: 151-154. https://doi.org/10.1023/A:1006846504261
  21. Kim, D.W., H.Y. Heo, S.J. Suh, Y.H. Lee, and S.J. Kim. 2006. Differentiation of barley response to drought and salt stress in antioxidant enzyme activity and free amino acid content. Korean J. Crop Sci. 51:133-138.
  22. Kim, Y.H., I.S. Shim, K. Kobayashi, and K. Usui. 1999. Relationship between Na content or K/Na ratio in shoots and salt tolerance in several gramineous plants. J. Weed Sci. Tech. 44:293-299. https://doi.org/10.3719/weed.44.293
  23. Kopriva, S. and H. Rennenberg. 2004. Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. J. Exp. Biol. 404:1831-1842.
  24. Kurban, H., H. Saneoka, K. Nehira, R. Adilla, G.S. Premachandra, and K. Fujita. 1999. Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi (Bieb.). Soil Sci. Plant Nutr. 45:851-862. https://doi.org/10.1080/00380768.1999.10414334
  25. Lacerda, C.F., J. Cambraia, M.A. Cano, H.A. Ruiz, and J.T. Prisco. 2003. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ. Exp. Bot. 49:107-120. https://doi.org/10.1016/S0098-8472(02)00064-3
  26. Lechno, S., E. Zamski, and E. Tel-Or. 1997. Salt stress-induced responses in cucumber plants. J. Plant Physiol. 150:206-211. https://doi.org/10.1016/S0176-1617(97)80204-0
  27. Lee, D.H., Y.S. Kim, and C.B. Lee. 2001. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J. Plant Physiol. 158:737-745. https://doi.org/10.1078/0176-1617-00174
  28. Liu, T. and J. van Staden. 2000. Selection and characterization of sodium chloride-resistant callus of Glycine max (L.) Merr. cv. Acme. Plant Growth Regulat. 31:195-207. https://doi.org/10.1023/A:1006391400927
  29. Maiale, S., D.H. Sanchez, A. Guirado, A. Vidal, and O.A. Ruiz. 2004. Spermine accumulation under salt stress. J. Plant Physiol. 161:35-42. https://doi.org/10.1078/0176-1617-01167
  30. Mansfield, T.A., A.M. Hetherington, and C.J. Atkinson. 1990. Some aspects of stomatal physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:55-75. https://doi.org/10.1146/annurev.pp.41.060190.000415
  31. Mittova, V., M. Guy, M. Tal, and M. Volokita. 2002. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: increased activities of antioxidant enzymes in root plastids. Free Radic. Res. 36:195-202. https://doi.org/10.1080/10715760290006402
  32. Morita, S., H. Kaminaka, T. Masumura, and K. Tanaka. 1999. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress; the involvement of hydrogen peroxide in oxidative stress signaling. Plant Cell Physiol. 40:417-422. https://doi.org/10.1093/oxfordjournals.pcp.a029557
  33. Munns, R. and A. Termaat. 1986. Whole-plant responses to salinity. Aust. J. Plant Physiol. 13:143-160. https://doi.org/10.1071/PP9860143
  34. Parida, A.K., A.B. Das, and P. Das. 2002. NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J. Plant Biol. 45:28-36. https://doi.org/10.1007/BF03030429
  35. Parida, A.K. and A.B. Das. 2005. Salt tolerance and salinity effects on plants. Ecotoxicol. Environ. Saf. 60:324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  36. Rengel, Z. 1992. The role of calcium in salt toxicity. Plant Cell Environ. 15:625-632. https://doi.org/10.1111/j.1365-3040.1992.tb01004.x
  37. Sanchez, D.H., J.C. Cuevas, M.A. Chiesa, and O.A. Ruiz. 2005. Free spermidine and spermine content in Lotus glaber under long-term salt stress. Plant Sci. 168:541-546. https://doi.org/10.1016/j.plantsci.2004.09.025
  38. Santa-Cruz, A., M. Acosta, F. Perez-Alfocea, and M.C. Bolarin. 1997. Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. Physiol. Plant 101:341-346. https://doi.org/10.1111/j.1399-3054.1997.tb01006.x
  39. Schachtman, D.P., R. Kumar, J.I. Schroeder, and E.L. Marsh. 1997. Molecular and functional characterization of a novel low-affinity cation transporter LCTI in higher plants. Proc. Natl. Acad. Sci. U.S.A. 94:11079-11084. https://doi.org/10.1073/pnas.94.20.11079
  40. Shalata, A., V. Mittova, M. Volokita, M. Guy, and M. Tal. 2001. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol. Plant. 112:487-494. https://doi.org/10.1034/j.1399-3054.2001.1120405.x
  41. Shim, I.S., Y. Naruse, Y.H. Kim, K. Kobayashi, and K. Usui. 1999. Scavenging activity of NaCl-induced activated oxygen in two rice (Oryza sativa L.) cultivars differing in salt tolerance. Jpn J. Tropical Agriculture 43:32-41.
  42. Singh, S.K., H.C. Sharma, A.M. Goswami, S.P. Datta, and S.P. Singh. 2000. In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biol. Plant. 43:283-286. https://doi.org/10.1023/A:1002720714781
  43. Takemura, T., N. Hanagata, K. Sugihara, S. Baba, I. Karube, and Z. Dubinsky. 2000. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat. Bot. 68:15-28. https://doi.org/10.1016/S0304-3770(00)00106-6
  44. Van Breusegem, F., E. Vranova, J.F. Dat, and D. Inze. 2001. The role of active oxygen species in plant signal transduction. Plant Sci. 161:405-414. https://doi.org/10.1016/S0168-9452(01)00452-6
  45. Wang, S.Y., H.J. Jiao, and M. Faust. 1991. Changes in ascorbate, glutathione, and related enzyme activities during thidiazuroninduced bud break of apple. Physiol. Plant 82:231-236. https://doi.org/10.1111/j.1399-3054.1991.tb00086.x
  46. Wang, Y. and N. Nil. 2000. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J. Hort. Sci. Biotechnol. 75:623-627. https://doi.org/10.1080/14620316.2000.11511297
  47. Yamamoto, A., I.S. Shim, S. Fujihara, T. Yoneyama, and K. Usui. 2004. Effect of difference in nitrogen media on salt-stress response and contents of nitrogen compounds in rice seedlings. Soil Sci. Plant Nutr. 50:85-93. https://doi.org/10.1080/00380768.2004.10408455