• Title/Summary/Keyword: bio-fertilizer

Search Result 386, Processing Time 0.038 seconds

Establishment of Optimum Nitrogen and Potassium Application for Paprika Fertigation (파프리카 관비재배를 위한 질소 및 칼륨의 시비량 설정)

  • Choi, Gyeong Lee;Rhee, Han Cheol;Yeo, Kyung Hwan;Lee, Seong Chan;Kang, Nam Jun;Choi, Hyo Gil
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • The paprika has emerged as one of the highest-income crops by increase in dimestic and export demand in the greenhouse crops. Nevertheless, there is no standard for fertigation in soil, because general culture system is soilless culture. This study was conducted to establish the optimum nitrogen and potassium application level for paprika fertigation. Four different levels of nitrogen and potassium were applied, treatment levels were 0.5, 1.0, 1.5, 2.0 times of pimiento fertilization recommendations based on soil testing. Experiment to instigate the optimum amounts of nitrogen and potassium were carried out in 2012 and 2013, respectively13. Nitrogen application : stem diameter of 0.5 times was significantly lower than other treatments, but stem length was not affected by nitrogen fiertigation levels. Number of fruit and yield of first fruiting group harvest were not significant difference. but those of the second fruiting group were decreased by increasing nitrogen level beyond 1.0 times treatment and were the lowest in 0.5 times treatment. Overall, the optimum level of nitrogen for fertigation was judged 1.0 times of pimiento fertilization recommendations based on soil testing. Potassium application : Growth was no signigicant trend except stem length. Number of locule, fresh thickness and sugar content were not significant difference. Number of fruit and yield were not significant difference at the first and second fruiting group harvest. But those were significant difference at third fruiting group harvest, maximum yield was obtained by 1.5 times fertigation level. The optimum level of potassium for fertigation was judged 1.5 times of pimiento fertilization recommendations based on soil testing.

Selection of Vegetables and Fertigation Methods for Veranda Gardening (베란다 재배에 적합한 채소작물 및 관비방법 선발)

  • Moon, Ji-Hye;Lee, Sang-Gyu;Jang, Yoon-Ah;Lee, Woo-Moon;Lee, Ji-Weon;Kim, Seung-Yu;Park, Hyun-Jun
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.314-321
    • /
    • 2007
  • This study was conducted to select leaf vegetables suitable for cultivation in apartment verandas and simple and easy fertigation method for home gardening. In order to develop the convenient fertigation method, hydroponics, wick irrigation, and overhead irrigation methods were compared. For the wick irrigation, two types of nutrient sources were used; one was slow release fertilizers mixed with medium and the other one was nutrient solution filled in container located under pots. The growth of leafy lettuce, leaf mustard, and leaf beet was better in both of the wick irrigation methods rather than in overhead irrigation and hydroponics. The wick irrigation method is very easy, so that it is expected to bring a good result from the cultivating and managing point of view, if it brings with commercialized system along with slow release fertilizer. As a result of investigation of environment such as temperature, relative humidity, and irradiance level in apartment verandas in autumn the highest irradiance level during a day was just 48% and 35% in verandas facing south and feeing southeast, respectively, comparing to that in greenhouse. The light environment was investigated as a limiting factor for vegetable growing in verandas. Therefore, to select the vegetables showing good growth under low irradiance environment, nine leaf vegetables such as romaine lettuce, lent lettuce, head lettuce, endive, pak-choi, leaf mustard, garland chrysanthemum, leaf beet, and Chinese chive were grown under 0%, 50%, 70%, 90% shading. Among them, Chinese chive showed the best growth under low irradiance levels. Endive showed line growth reduction according to shading degree, however, even under 90% shading condition, it showed good growth. And then leafy lettuce, garland chrysanthemum, and pak-choi followed. Therefore, these results will be of help in selecting vegetables for veranda gardening with different light levels.

Composition and EC of Nutrient Solution on Growth and Quality of Carrot (Daucus carrota L.) in Hydroponics (당근 수경재배시 생육 및 품질에 미치는 배양액 조성 및 농도)

  • Oh, Dong-Gyu;Cha, Mi-Kyung;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.340-345
    • /
    • 2017
  • Carrot leaves have many nutrients as well as roots, which will increase the demand for carrot leaves in the future. This study was carried out by dividing into two stages: high temperature and low temperature periods, in order to investigate the possibility of cultivation of carrot leaves and the composition and EC of the nutrient solution for growth and quality of carrot leaves. Composition of nutrient solution($NO_3-N:16.0$, $NH_4-N:1.0$, P: 1.0, K: 11.0, Ca: 2.0, Mg: 1.0, $SO_4-S:1.0mM{\cdot}L^{-1}$) developed by analysis of plant. In the high temperature range (From June $29^{th}$ to Sep. $8^{th}$, 2016), the concentration of the developed nutrient solution (JNU) were 1.0, 2.0, 3.0, and $4.0dS{\cdot}m^{-1}$ and the concentration of nutrient solution of Japanese Horticultural Station(JHS) $2.0dS{\cdot}m^{-1}$ was used for comparison. In the low temperature range (From Dec. $31^{st}$, 2015 to Feb. $29^{th}$, 2016), the concentration of the developed nutrient solution 1.0, 2.0, and $3.0dS{\cdot}m^{-1}$ were used. Growth was investigated in root fresh and dry weights, shoot fresh and dry weights, leaf number, and leaf area of carrot. In the high temperature range, the leaf area and shoot fresh and dry weights were good at 1.0 and $2.0dS{\cdot}m^{-1}$. The sugar content of the root was the highest at the EC $2.0dS{\cdot}m^{-1}$, and the chlorophyll content was the highest at the EC $4.0dS{\cdot}m^{-1}$. In the low temperature range, The shoot fresh and dry weights were the highest at EC 1.0 and $2.0dS{\cdot}m^{-1}$. There was no significant difference in sugar content and chlorophyll content. As a result, from the viewpoint of growth and quality of carrot, it is good to cultivate EC 1.0 and $2.0dS{\cdot}m^{-1}$ in high temperature period and low temperature period, but EC $1.0dS{\cdot}m^{-1}$ is economical perspective such as fertilizer input.

Effect of Fused Superphosphate Levels in Various Root Media Containing Micronutrient Mixes on Growth of Marigold Plug Seedlings (미량원소복합제가 혼합된 각종 상토에서 용과린의 시비수준이 매리골드 플러그 묘의 생육에 미치는 영향)

  • Choi Jong-Myung
    • Journal of Bio-Environment Control
    • /
    • v.15 no.2
    • /
    • pp.196-203
    • /
    • 2006
  • Objective of this research was to determine the effect of application level of fused superphosphate (FSPP) in root media containing granular micronutrient fertilizers (MF) on growth of marigold 'Orange boy' in plug culture. To achieve this, three granular micronutrient mixes such as MF 1, MF 2, and MF 3 were produced and incorporated into three root media, peatmoss+composted pine bark (1:1, v/v, PB), peatmoss+composted rice-hull (1:1, v/v, PR), and peatmoss+composted saw-dust (1:1, v/v, PS), at a rate of $0.3g{\cdot}L^{-1}$. Elevated application level of FSPP in PS medium containing each of MF resulted in increase of plant growth such as plant height, plant width, stem diameter, fresh weight and dry weight at 35days after sowing. The dry weight in the treatment of MF 1, MF 2, MF 3, and control fertilized with $9.0g{\cdot}L^{-1}$ of FSPP were 0.066g, 0.103g, 0.077g, and 0.095g per plant, respectively. These results indicated that each of MF affected marigold plug seedlings differently. The application level of FSPP resulted in the heaviest fresh and dry weight in PR medium were $9.0g{\cdot}L^{-1}$ in MF 1, $3.0g{\cdot}L^{-1}$ in MF 2, $9.0g{\cdot}L^{-1}$ in MF 3, and $6.0g{\cdot}L^{-1}$ in control. Elevated application level of FSPP in PB medium containing each of the micronutrient mix increased fresh and dry weight. The general trends in response of plant growth to elevated FSPP were linear and quadratic. The dry weight in the treatment of MF 1, MF 2, MF 3, and control fertilized with $9.0g{\cdot}L^{-1}$ of FSPP in PB medium were 0.131g, 0.104g, 0.137g, and 0.111g per plant at 35days after sowing. These results indicated that MF 1 and MF 3 performed better than MF 2 and control treatments in growth of marigold plug seedlings.

An Approach to Determine the Good Seedling Quality of Grafted Tomatoes (Solanum Lycopersicum) Grown in Cylindrical Paper Pot Through the Relation Analysis between DQI and Short-Term Relative Growth Rate (DQI와 단기 상대생장률 분석을 이용한 원통형 종이포트 토마토 접목묘의 우량묘 기준 설정)

  • Seo, Tae Cheol;An, Se Woong;Jang, Hyun Woo;Nam, Chun Woo;Chun, Hee;Kim, Young chul;Kang, Tae Kyung;Lee, Sang Hee
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.302-311
    • /
    • 2018
  • Using cylindrical paper pot nursery method, three kinds of commercial tomatoes 'Dafnis', 'DOTAERANG DIA' and 'Maescala' were grafted onto a commercial rootstock 'B blocking'. From 10 to 40 days after graft-take, growth traits of seedlings were investigated by 0.5, 1.0 and 2.0S treatments of standard nutrient solution(S) for seedling growth, and top to root ratio(TRR), compactness(CP) and Dickson Quality Index(DQI) were calculated. Two weeks after transplanting of the seedlings under three different night temperature targeting to 10, 15, and $25^{\circ}C$, which were not precisely controlled, the relative growth rate (RGR) was investigated. The quantitative growth traits of grafted seedlings increased with increasing fertilizer concentration, and various range of seedling size could be produced. Compactness and DQI were significantly regressed (Adj $R^2=0.9480$). Short-term RGR after transplanting was higher at 1.0S treatment of standard nutrient solution at the seedling age of 30 days and 40 days after graft-take(DAGT). DQI and RGR were significantly regressed linearly at respective fertigation strength. Specially the diminishing slope of RGR was lower at 1.0S fertigation strength with the increase of DQI than others. The results indicate that DQI could be applied as a quality index of grafted tomato seedlings and the relation analysis between DQI and short-term RGR also could be used to determine the good quality seedlings of grafted tomato grown in cylindrical paper pot.

Effect of Supplying Volume and Frequency of Nutrient Solution on Growth and Fruit Quality of Blueberry (블루베리 양액재배시 공급량 및 공급횟수가 수체생육 및 과실품질에 미치는 영향)

  • Cheon, Mi Geon;Lee, Young Suk;Chung, Yong Mo;Kim, Hee Dae;Hong, Kwang Pyo;Kumarihami, H.M. Prathibhani C.;Kim, Jin Gook
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.447-453
    • /
    • 2019
  • In this study, the effect of supplying volume and frequency of a nutrient solution consisted with $NO_3-N$ 4.6, $NH_4-N$ 3.4, $PO_4-P$ 3, K 3, Ca 4.6 and Mg $2.2mmol{\cdot}L^{-1}$ on growth and fruit quality of 'Duke' blueberry was investigated. Three years old 'Duke' blueberry bushes cultivated in containers ($60{\times}80{\times}40cm$) filled with 130L peat moss and 40L pearlite (v/v) were selected for the experiment. The growth containers were mulched with sawdust. Two different volumes (4L and 8L) of nutrient solution was tested at three different supplying frequencies (one time, two times, and three times) per week and the drainage quality of nutrient solution and fruit quality of 'Duke' blueberry was evaluated. The optimal drainage rate for the vegetable cultivation is known to be 20-30%. The results revealed that the average drainage rates of 27% and 29% for the nutrient solution supplied in 'Duke' blueberry growth medium at 4L, 2 times/7 days and 4L, 3 times/7days, respectively. The highest shoot diameter (4.2mm) and shoot length (31cm) of 'Duke' blueberry was recorded with the 8L of nutrient solution supplied at 3 times per 7 days. According to the analysis of inorganic components in the drainage of nutrient solution, there was a tendency of absorbing nitrogen at the early stage of growth. The supplying volume and frequency of nutrient solution was not significantly affected on 'Duke' blueberry fruit weight, soluble solids content, and titratable acidity. The highest yield per bush (2.7kg) was recorded for the nutrient solution supplied with 4L at three times per 7 days, while the 4L nutrient solution supplied at one time per 7 days resulted the lowest yield of 1.4kg per bush. Consequently, the tested nutrient solution can be applied for the 'Duke' blueberry bushes with the volume of 4L at three times per week for the better crop growth.

Influence of Varied Pre-planting N Levels in a Medium on the Growth of Chinese Cabbage and Pak-choi Seedlings in Paper Pot Raising (종이포트 육묘시 기비로 혼합된 질소 시비수준이 배추와 청경채 생장에 미치는 영향)

  • Kim, Hyun Cheul;Park, Myong Sun;Jang, Yoonah;An, Sewoong;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.342-351
    • /
    • 2019
  • The optimum N concentrations incorporated as pre-planting nutrient charge fertilizer were determined for seedling raising using cylindrical paper pots. A root medium was formulated by blending of peat moss (particles smaller than 2.84 mm were 80-90%) and perlite (1 to 3 mm) with the ratio of 7:3 (v/v). The treatment N concentrations incorporated during the root medium formulation were adjusted to 0, 150, 250, 500, and $750mg{\cdot}L^{-1}$ and the concentrations of essential nutrients except N were equal in all treatments. After making of paper pots and putting into the 40-cell tray, the seeds of Chinese cabbage ('Chunmyeong Bom Baechu') and pak-choi ('Hanog cheonggyeongchae') were sown. During the raising of seedlings, weekly analysis of medium pH, EC and concentrations of inorganic elements were conducted. After 21 and 20 days after seed sowing of Chinese cabbage and pak-choi, the growth of the above-ground parts were measured and contents of inorganic elements in the plant tissues were analyzed. During the growing period, pH of the root media rose gradually and the EC decreased rapidly at week 3. The pH of root media at harvest was in the range of 5.3 to 5.9 in Chinese cabbage and 4.93 to 5.39 in pak-choi. Growth of the aboveground parts in terms of fresh and dry weight in both the plants were the highest in the $250mg{\cdot}L^{-1}$ N treatment and the lowest in the control treatment. The elevation of pre-planting N concentrations in root medium resulted in the increase of tissue N content and decrease of P, Ca, and Mg contents. The regression equation derived from the influence of varied pre-planting N concentrations on dry weight of above-ground tissue were $y=-0.0036x^2+0.0021x+0.0635$ ($R^2=0.9826$) in Chinese cabbage and $y=-0.16x^2+0.0009x+0.032$ ($R^2=0.991$) in pak-choi. When the low critical concentration of pre-plant N is taken at the point where dry weight of above-ground tissue is 10% less than maximum (0.40 g in Chinese cabbage and 0.16 g in pak-choi), those point are 0.36 g and 0.144 g per plant in Chinese cabbage and pak-choi, respectively. The lower critical N concentrations of root media calculated from the regression equations are $196mg{\cdot}L^{-1}$ for Chinese cabbage and $187mg{\cdot}L^{-1}$ for pak-choi. These results indicate that optimum pre-plant N concentrations for seedling raising using paper pots are in the range of 196 to $250mg{\cdot}L^{-1}$ for Chinese cabbage and 187 to $250mg{\cdot}L^{-1}$ for pak-choi.

Effect of Irrigation Starting Point of Soil on Chlorophyll Fluorescence, Stem Sap Flux Relative Rate and Leaf Temperature of Cucumber in Greenhouse (시설 토양 오이재배에서 관수개시점 처리가 광합성 형광반응, 줄기수액흐름 및 엽온에 미치는 영향)

  • An, Jin Hee;Jeon, Sang Ho;Choi, Eun Yong;Kang, Ho Min;Na, Jong Kuk;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.46-55
    • /
    • 2021
  • This experiment was conducted to investigate the effect on chlorophyll fluorescence, stem sap flux relative rate (SFRR) and leaf temperature of cucumber when irrigation is controlled using a soil moisture tensiometer. Cucumber (Cucumis sativus L.) 'Chungchun' was irrigated of 10-10-20 kPa and 20-10-10 kPa by soil starting point of irrigation at each growth stage. At the 66 days after treatment (DAT) of 736 to 854 W·m-2 and above 32℃, chlorophyll fluorescence variables (Fo, Fm, Fv/Fm) values showed significantly different between treatments. The Fo and Fv/Fm value in the daytime (10:30 am to 6:00 pm) at 66 DAT was higher in 20-10-10 kPa treatment than in 10-10-20 kPa treatment. The Fv/Fm value decreased when the leaf temperature was increased. There was no difference in leaf growth (length, width and area) at 28 and 66 DAT, but the chlorophyll content (SPAD value) was significantly higher in 20-10-10kPa treatment. SFRR and leaf temperature increased with light intensity and temperature increased. In both treatments, the SFRR started to increase sharply between 8 am and 9 am when the solar radiation is 170 W·m-2 or higher. The soil temperature of the treatments decreased after irrigation, that showed 31.0℃ at 10-10-20kPa and 28.5℃ at 20-10-10kPa on July 5 (820W·m-2 at 1 pm). However, there was no difference in SFRR, leaf temperature, temperature difference (leaf temperature - air temperature) and VPD between treatments. SFRR was significantly positive correlate with the leaf temperature (p < 0.01, r = 0.770). The SFRR and leaf temperature showed positive significant correlation with solar radiation, temperature, soil temperature, soil moisture content and VPD. There was a negative significant correlation with relative humidity and temperature difference.

Evaluation of Fruit Yield and Quality of Netted Melon, Water and Nutrient Use Efficiency in a Closed Hydroponic System (순환식 수경재배 멜론의 수량과 품질, 관개수 및 양분 이용 효율성 평가)

  • Minju Shin;Seungri Yoon;Jin Hyun Kim;Ho Jeong Jeong;Sung Kyeom Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.492-500
    • /
    • 2023
  • The spectrum of this study was research on the closed hydroponic cultivation of netted melons (Cucumis melo L.) using coir substrate, analyzing the impact of this cultivation method on melon yield, fruit quality, and the efficiency of water and nutrient usage. The experimental results showed that the average fruit weight of the melons grown in a closed system was 71.4 g higher than that of the open system, and the fruit width was on average 0.2 cm larger, showing a statistically significant difference. However, there was no difference in the average sugar content of the fruit flesh and height. Although there is no substantial commercial difference, it is conjectured that the change in the macronutrients ratio in the irrigation has played a role in the statistically significant increase in fruit weight, which is attributed to changes in the crops' nutrient uptake concentrations. This necessitates further research for a more comprehensive understanding. In terms of the productivity of irrigation required to produce the fruit, applying the closed system resulted in an increase of 7.6 kg/ton compared to the open system, saving 31.6% of water resources. Additionally, in terms of nutrients, cultivating in a closed system allowed for savings of approximately 59, 25, 55, 83, 76, and 87% of N, P, K, Ca, Mg, and S, respectively, throughout the entire cultivation period. As the drainage was reused, the ratios of NO3- and Ca2+ increased up to a maximum of 9.6 and 9.1%, respectively, while the ratios of other ions gradually decreased. In summary, these results suggest that closed hydroponic cultivation can effectively optimize the use of water and fertilizer while maintaining excellent fruit quality in melon cultivation.

Nutrient Uptake Rate, Growth and Yield of Strawberry in Aquaponics (아쿠아포닉스 재배에서 딸기의 양분흡수율, 생육 및 수량)

  • Min-Kyung Kim;Su-Hyun Choi;Seo-A Yoon;Jong-Nam Lee;Eun-Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.55-62
    • /
    • 2024
  • This study aimed to compare the nutrient uptake rate, growth and yield of strawberry grown under the aquaponic and hydroponic systems in a plant factory. For aquaculture, 12 of fish (Cyprinus carpio cv. Koi) were raised in an aquaponics tank (W 0.7 m × L 1.5 m × H 0.45 m, 472.5 L) filled with 367.5L of water at a density of 5.44 kg·m-3. The 30 seedlings of strawberry were planted in ports filled with perlite substrate and then were placed on the bed (W 0.7 m × L 1.5 m × H 0.22 m) at the top of the aquaponics system, and the 30 seedlings were planted in net-pots and then placed on the holes of acrylic plates (140 cm × 60 cm, Ø80 mm) on the bed (W 0.7 m × L 1.5 m × H 0.22 m) at the deep flow technique (DFT)- hydroponics. The pH and EC of the aquaponic solution was ranged from 4.3 to 6.9 and 0.32 to 1.14 dS·m-1, respectively, while those of hydroponics were ranged from 5.1 to 7.5 and 1.0-1.8 dS·m-1, respectively. The NO3-N and NH4-N concentration of the aquaponic solution were higher about 3.6 and 2.2 me·L-1 than those of the standard hydroponic solution for strawberry cultivation. The P, Ca, Mg, and S ions in the aquaponic solution were also higher about 0.76, 3.1, 0.8, and 0.9 me·L-1 than those of standard hydroponic solution, respectively, while the K and Fe were lower about 0.8 me·L-1 and 0.5 mg·L-1, respectively. The mineral contents of the strawberry leaves grown on aquaponics did not differ from that of hydroponics, and K content in the leaves were in an appropriate range. Uptake rates of T-N and P between the 58 and 98 days after transplant (DAT) were 1.5 and 1.9-fold higher in the aquaponics than those of hydroponics, respectively with no significant difference in the uptake rate of K. The crown diameter, plant height, and leaf length and width in the 98 DAT were significantly higher in aquaponics. The number of fruits per plant was significantly higher in aquaponics than those in hydroponics, and the fresh and dry weights of fruit and length and width of fruit were significantly higher in hydroponics. The results suggest that plants in aquaponics continuously utilize fertilizer components of solid particles from fish and feed wastes.