• Title/Summary/Keyword: bio-convection

Search Result 27, Processing Time 0.027 seconds

Impact in bioconvection MHD Casson nanofluid flow across Darcy-Forchheimer Medium due to nonlinear stretching surface

  • Sharif, Humaira;Hussain, Muzamal;Khadimallah, Mohamed A.;Naeem, Muhammad Nawaz;Ayed, Hamdi;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.791-798
    • /
    • 2021
  • Current investigation aims to analyze the characteristics of magnetohydrodynamic boundary layer flow of bioconvection Casson fluid in the presence of nano-size particles over a permeable and non-linear stretchable surface. Fluid passes through the Darcy-Forchheimer permeable medium. Effect of different parameter such as Darcy-Forchheimer, porosity parameter, magnetic parameter and Brownian factor are investigated. Increasing Brownian factor leads to the rapid random movement of nanosize particles in fluid flows which shows an expansion in thermal boundary layer and enhances the nanofluid temperature more rapidly. For large values of Darcy-Forchheimer, magnetic parameter and porosity factor the velocity profile decreases. Higher values of velocity slip parameter cause decreasing trend in momentum layer with velocity profile.

Analysis of Heat Transmission Characteristics through Air-Inflated Double Layer Film by Using Thermal Resistance Equation (열저항식을 이용한 공기막 이중필름의 관류전열량 특성 분석)

  • Kim, Hyung-Kweon;Jeon, Jong-Gil;Paek, Yee;Lee, Sang-Ho;Yun, Nam-Kyu;Yoo, Ju-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.316-321
    • /
    • 2013
  • This study was carried out to analyze heat transfer characteristics and heat flow through air-inflated double layer PO film with thermal resistance method. The experiments was conducted in the laboratory controlled air temperature between 258.0 K and 278.0 K. The experimental materials were made up two layers PO film and an inflated-air layer. The thickness of air-inflated layer was fixed at 3 types of 110, 175, 225 mm. The electrical circuit analogy for heat transfer by conduction, radiation and convection was introduced. Experimental data shows that the dominant thermal resistance in heat transfer through the air-inflated double layer film was convection. Calculation errors were 1.1~18.5 W for heat flow. In result, the method of thermal resistance could be introduced for analysis of heat flow characteristics through air-inflated double layer film.

Analysis of Heat Emission from Hot Water Pipe for Greenhouse Heating System Design (온실 난방시스템 설계를 위한 온수난방배관의 방열량 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.204-211
    • /
    • 2019
  • The purpose of this study is to provide basic data for setting environmental design standards for domestic greenhouses. We conducted experiments on thermal environment measurement at two commercial greenhouses where hot water heating system is adopted. We analyzed heat transfer characteristics of hot water heating pipes and heat emission per unit length of heating pipes was presented. The average air temperature in two greenhouses was controlled to $16.3^{\circ}C$ and $14.6^{\circ}C$ during the experiment, respectively. The average water temperature in heating pipes was $52.3^{\circ}C$ and $45.0^{\circ}C$, respectively. Experimental results showed that natural convection heat transfer coefficient of heating pipe surface was in the range of $5.71{\sim}7.49W/m^2^{\circ}C$. When the flow rate in heating pipe was 0.5m/s or more, temperature difference between hot water and pipe surface was not large. Based on this, overall heat transfer coefficient of heating pipe was derived as form of laminar natural convection heat transfer coefficient in the horizontal cylinder. By modifying the equation of overall heat transfer coefficient, a formula for calculating the heat emission per unit length of hot water heating pipe was developed, which uses pipe size and temperature difference between hot water and indoor air as input variables. The results of this study were compared with domestic and foreign data, and it was found to be closest to JGHA data. The data of NAAS, BALLS and ASHRAE were judged to be too large. Therefore, in order to set up environmental design standards for domestic greenhouses, it is necessary to fully examine those data through further experiments.

Theoretical gravity studies on roles of convection in crystal growth of $Hg_2Cl_2$-Xe by physical vapor transport under normal and high gravity environments

  • Kim, Geug-Tae;Kwon, Moo-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.3
    • /
    • pp.107-115
    • /
    • 2009
  • Particular interest in the role of convection in vapor crystal growth has arisen since some single crystals under high gravity acceleration of $10g_0$ appear considerably larger than those under normal gravity acceleration ($1g_0$). For both ${\Delta}T=60\;K$ and 90 K, the mass flux increases by a factor of 3 with increasing the gravity acceleration from $1g_0$ up to $10g_0$. On the other hand, for ${\Delta}T=30\;K$, the flux is increased by a factor of 1.36 for the range of $1g_0{\leq}g{\leq}10g_0$. The maximum growth rates for $1g_0$, $4g_0$, $10g_0$ appear approximately in the neighborhood of y = 0.5, and the growth rates shows asymmetrical patterns, which indicate the occurrence of either one single or more than one convective cell. The maximum growth rate for $10g_0$ is nearly greater than that for $1g_0$ by a factor of 2.0 at $P_B=20\;Torr$. For three different gravity levels of $1g_0$, $4g_0$ and $10g_0$, the maximum growth rates are greater than the minimum rates by a factor of nearly 3.0, based on $P_B=20\;Torr$. The mass flux increases with increasing the gravity acceleration, for $1g_0{\leq}g_y{\leq}10g_0$, and decreases with increasing the partial pressure of component B, xenon (Xe), $P_B$. The $|U|_{max}$ is directly proportional to the gravity acceleration for $20\;Torr{\leq}P_B{\leq}300\;Torr$. As the partial pressure of $P_B$ (Torr) decreases from 300 Torr to 20 Torr, the slopes of the $|U|_{max}s$ versus the gravity accelerations increase from 0.1 sec to 0.17 sec. The mass flux of $Hg_2Cl_2$ is exponentially decayed with increasing the partial pressure of component B, $P_B$ (Torr) from 20 Torr up to 300 Torr.

Influence of thermal radiation and magnetohydrodynamic on the laminar flow: Williamson fluid for velocity profile

  • Muzamal Hussain;Humaira Sharif;Mohammad Amien Khadimallah;Hamdi Ayed;Abir Mouldi;Muhammad Naeem Mohsin;Sajjad Hussain;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.427-434
    • /
    • 2024
  • Latest advancement in field of fluid dynamics has taken nanofluid under consideration which shows large thermal conductance and enlarges property of heat transformation in fluids. Motivated by this, the key aim of the current investigation scrutinizes the influence of thermal radiation and magnetohydrodynamic on the laminar flow of an incompressible two-dimensional Williamson nanofluid over an inclined surface in the presence of motile microorganism. In addition, the impact of heat absorption/generation and Arrhenius activation energy is also examined. A mathematical modeled is developed which stimulate the physical flow problem. By using the compatible similarities, we transfer the governing PDEs into ODEs. The analytic approach based on Homotopy analysis method is introduced to impose the analytic solution by using Mathematica software. The impacts of distinct pertinent variable on velocity profiles are investigated through graphs.

Sprouting Inhibition after CIPC Spraying on Early and Mid-season Potato Varieties during Storage in Semi-underground Warehouse at Room Temperature in Summer (CIPC 처리한 조·중생종 감자의 반지하 저장고를 이용한 하계 실온저장 중 맹아 억제 효과 비교)

  • Kyusuk Han;Byung-Sup Kim;Sae Jin Hong;Young Hun Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.172-180
    • /
    • 2023
  • This study was carried out to determine the sprouting period of early and mid-season varieties, which includes 'Atlantic', 'Chubaek', and 'Superior', during the summer storage period in a semi-underground warehouse without cooling system. And also it was investigated the effect of chlorpropham [Propan-2-yl N-(3-chlorophenyl)carbamate, CIPC] treatment on the sprouting inhibition for the varieties. This study was conducted to figure out a sprout inhibitory effect when CIPC was applied to 1kg of the potato tubers at concentrations of 10 mg and 20 mg which are lower than the treatment concentrations of ca 30 mg prescribed by the positive list system (PLS). The internal temperature of the warehouse used in this experiment was lowered by 5℃ or more than the outside temperature. The difference between the lowest and highest temperature during the experiment throughout the day was 5℃. It showed the effect of reducing to 1/2 of the difference in outdoor temperature. As for the sprouting of potatoes, the extremely early variety 'Chubaek' sprouts appeared at the 6th week of storage of control and it was the fastest sprouting potato among the control groups of the varieties. Sprouting began to appear in the Superior at the 6th week of storage, while the 'Atlantic' sprouted at the 8th week of storage. The appearance of sprouts was suppressed in all treatment groups of 'Atlantic' and 'Superior' varieties in CIPC treatments. Sprouts were observed in all treatment groups of 'Chubaek' after the 7th week, but the elongations of the sprouts in tubers were completely inhibited until the 8th week of storage. 'Atlantic' and 'Superior' seemed to have a sprouting inhibitory effect even with a low CIPC concentration of 10 mg·kg-1, with the exception of extremely early variety 'Chubaek' that breaks out of the dormancy quickly. Although weight loss occurred continuously during storage, it was minor loss of 0.7-1.6%. There was no consistent trend for changes of the loss in the varieties and CIPC treatments. Most common pathological disorder was the dry rot during the experiment, but only few were affected. The use of the tubers treated at 18℃ and 90% RH for 10 days and the rack of refrigeration system which lead to lack of convection seemed to have suppressed the spread of pathogens.

Analysis of Heating Effect of an Infrared Heating System in a Small Venlo-type Glasshouse (소형 벤로형 유리온실에서 적외선등 난방 시스템의 난방효과 분석)

  • Lim, Mi Young;Ko, Chung Ho;Lee, Sang Bok;Kim, Hyo Kyeong;Bae, Yong Han;Kim, Young Bok;Yoon, Yong Cheol;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.3
    • /
    • pp.186-192
    • /
    • 2010
  • An infrared heating system, installed in a small venlo-type glasshouse ($280m^2$) in Gyeongsang National University, Jinju, Korea, was used to investigate its heating effect with potted Phalaenopsis, Schefflera arboricola 'Hongkong', Ficus elastica 'Variegata', and Rosa hybrida 'Yellow King' as the test plants. Temperature changes in test plants with the system turned 'On' and 'Off' were measured by using an infrared camera and the consumption of electricity by this infrared heating system was measured and analyzed. In potted Phalaenopsis, when the set air temperature of the greenhouse was $18^{\circ}C$, temperature of leaves and the growing medium were $22.8{\sim}27^{\circ}C$ and $21.3{\sim}24.3^{\circ}C$, respectively. In such tall plants as Schefflera arboricola 'Hongkong' and Ficus elastica 'Variegata', the upper part showed the highest temperature of 24.0 and $26.9^{\circ}C$, respectively. From the results of temperature change measurements, the plant temperatures were near or above the set point temperatures with some fluctuations depending on the position or distance from the infrared heating system. When air temperature between night and dawn dropped sharply, plant temperatures were maintained close to the set temperature ($18^{\circ}C$). There was a significant difference between 'On' and 'Off' states of the infrared heating system in average temperatures of root zone and leaf: 21.8 and $17.8^{\circ}C$ with the system 'On' and 20.4 and $15.5^{\circ}C$ with the system 'Off', respectively, in a cut rose Rosa hybrida 'Yellow King'. The heating load was about $24,850{\sim}35,830kcal{\cdot}h^{-1}$, which comes to about 27,000~40,000 won in Korean currency when calculated in terms of the cost of heating by a hot water heating system heated by petroleum. The cost for heating by the infrared heating system was about 35% of that of a hot water heating system. With the infrared heating system, the air temperature during the night was maintained slightly lower than the set point air temperature, probably due to the lack of air tightness of the glasshouse. Therefore, glasshouses with an infrared heating system requires further investigation including the installation space of the heat-emitting units, temperature sensor positions, and convection.