• Title/Summary/Keyword: bio-MEMS

Search Result 110, Processing Time 0.034 seconds

A Photosensitive Glass Chip for DNA Purification of Nucleic Acid Probe Assay

  • Kim, Joon-Ho;Kim, Byung-Gyun;Yoon, Jun-Bo;Euisik Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.232-238
    • /
    • 2001
  • A new DNA purification chip is proposed and fabricated for the sample preparation of Nucleic Acid (NA) probe assay. The proposed DNA purification chip is fabricated using photosensitive glass substrate and polydimethylsiloxane (PDMS) cover fixture. We have successfully captured and eluted the DNA using the fabricated photosensitive glass chip. The fabricated DNA purification chip showed a binding capacity of $15ng/\textrm{cm}^2$and a minimum extractable input concentration of $100copies/200\muL$. The proposed DNA purification chip can be applied for low-cost, disposable sample preparation of NA probe assays.

  • PDF

Visualization for the mixing state of a batch-type ultrasonic mixer for its application to the microdevice (마이크로믹서에의 응용을 위한 batch type 초음파믹서의 혼합 상태 가시화)

  • Heo, Pil-Woo;Yoon, Eui-Soo;Koh, Kwang-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.47-51
    • /
    • 2005
  • An active ${\mu}$-mixer is important in Bio-MEMS and ${\mu}$-TAS. The mixing state depends on some kinds of factors including the intensity of ultrasonic radiation. We have visualized the mixing state of the mixing chamber with radiation time and presented the influence of the driving voltage in this research. It will be possible to compare the performances of the ultrasonic radiation parts used in the active ${\mu}$-mixer using this method.

Characteristics of poly 3C-SiC doubkly clamped beam micro resonators (양단이 고정된 빔형 다결정 3C-SiC 마이크로 공진기의 특성)

  • Ryu, Kyeong-Il;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.217-217
    • /
    • 2009
  • This paper describes the characteristics of polycrystalline 3C-SiC doubly clamped beam micro resonators. The polycrystalline 3C-SiC doubly clamped beam resonators with 60 ~ 100 ${\mu}m$ lengths, $10\;{\mu}m$ width, and $0.4\;{\mu}m$ thickness were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonant frequency was measured by a laser vibrometer in vacuum at room temperature. For the 60 ~ 100 ${\mu}m$ long cantilevers, the fundamental frequency appeared at 373.4 ~ 908.1 kHz. The resonant frequencies of doubly clamped beam with lengths were higher than simulated results because of tensile stress. Therefore, polycrystalline 3C-SiC doubly clamped beam micro resonators are suitable for RF MEMS devices and bio/chemical sensor applications.

  • PDF

A simulation study on fluid flowing in micro pump (Simulation을 통한 미세 PUMP 내에서의 유체흐름 연구)

  • 김용천;류근걸
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.163-166
    • /
    • 2002
  • 21세기에 가장 시급하게 확보되어야 하는 기술은 BT (Biotechnology)와 NT(Nano technology)를 접목시키는 기술이다. 특히, 이들을 종합한 MEMS에 관한 연구는 가장 광범위한 분야에서 활발하게 이루어지고 있어 그 기술적 가치가 점차 중요시되고 있다 본 연구는 Simulation을 통하여 Bio-MEMS기술에서 사용되는 미세Pump 내에서의 유체흐름을 Fluent 프로그램을 사용하여 알아보고자 하였다. 즉, 미세Pump 내로 유체가 흐를 경우, 유체의 압력변화나 온도 변화 및 Model에 따른 유동의 흐름을 관찰하여 미세pump 내에서의 최적의 외부조건과 최적의 Pump모델을 알아보고자 실험하였다. 유동의 흐름을 조사해 본 결과 Chamber의 유무에 따라 압력과 온도의 변화를 관찰할 수 있었다. Chamber가 있는 경우 압력의 변화가 적었고 온도의 변화 또한 적었다. 따라서 Chamber가 있는 Pump가 유체의 흐름에 영향을 적게 줌을 알 수 있었으며 이는 Chamber가 있는 Pump를 설계하는 것이 필요하다고 할 수 있다.

Design and Characteristics of valveless micro-pump for small liquid delivery (미소유체 밸브리스 압전펌프의 설계 및 특성)

  • Lim, Jong-Nam;Oh, Jin-Heon;Lim, Kee-Joe;Kim, Hyun-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1275_1276
    • /
    • 2009
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. Using the flexural vibration mode of PZT bar, a piezopump is successfully made. The PZT bar is polarized with thickness direction. The proposed structure for the piezo-pump consists of an input and an output port, piezoelectric ceramic actuator, actuator support, diaphragm. The traveling flexural wave along the bar is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. Fluid is drawn into a forming chamber, eventually the forming chamber closes trapping the fluid therein.

  • PDF

Numerical Analysis of Gas Flows in Microchannels in Series (직렬 미소채널 기체유장의 수치해석)

  • Chung Chan Hong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.221-231
    • /
    • 2004
  • A kinetic theory analysis is made of low-speed gas flows in a microfluidic system consisted of three microchannels in series. The Boitzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. For the evaluation of the present method results are compared with those from the DSMC method and an analytical solution of the Navier-Stokes equations with slip boundary conditions. Calculations are made for flows at various Knudsen numbers and pressure ratios across the channel. The results compared well with those from the DSMC method. It is shown that the analytical solution of the Navier-Stokes equations with slip boundary conditions which is suited fur fully developed flows can give relatively good results. In predicting the geometrically complex flows up to a Knudsen number of about 0.06. It is also shown that the present method can be used to analyze extremely low-speed flow fields for which the DSMC method is Impractical.

  • PDF

Fabrication of Polycrystalline SiC Doubly Clamped Beam Micro Resonators and Their Characteristics (양단이 고정된 빔형 다결정 3C-SiC 마이크로 공진기의 제작과 그 특성)

  • Chung, Gwiy-Sang;Lee, Tae-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.303-306
    • /
    • 2009
  • This paper describes the characteristics of polycrystalline 3C-SiC doubly clamped beam micro resonators. The polycrystalline 3C-SiC doubly clamped beam resonators with $60{\sim}100{\mu}m$ lengths, $10{\mu}m$ width, and $0.4{\mu}m$ thickness were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonant frequency was measured by a laser vibrometer in vacuum at room temperature. For the $60{\sim}100{\mu}m$ long cantilevers, the fundamental frequency appeared at $373.4{\sim}908.1\;kHz$. The resonant frequencies of doubly clamped beam with lengths were higher than simulated results because of tensile stress. Therefore, polycrystalline 3C-SiC doubly clamped beam micro resonators are suitable for RF MEMS devices and bio/chemical sensor applications.

Fabrication and characterization of polycrystalline 3C-SiC mocro-resonators (다결정 3C-SiC 마이크로 공진기 제작과 그 특성)

  • Lee, Tae-Won;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.250-250
    • /
    • 2008
  • This paper describes the resonant characteristics of polycrystalline SiC micro resonators. The $1{\mu}m$ thick polycrystalline 3C-SiC cantilevers with different lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonance was measured by a laser vibrometer in vacuum at room temperature. For the 100 ~ $40{\mu}m$ long cantilevers, the fundamental frequency appeared at 147.2 kHz - 856.3 kHz. The $100{\mu}m$ and $80{\mu}m$ long cantilevers have second mode resonant frequency at 857.5 kHz and 1.14 MHz. Therefore, polycrystalline 3C-SiC micro resonators are suitable for RF MEMS devices and bio/chemical sensor applications.

  • PDF

Micro Mass detection devices for Bio-Chip based on PZT Thick Film Cantilever (PZT 후막 캔틸레버를 이용한 바이오칩용 미세 무게 감지 소자)

  • Kim, Hyung-Joon;Kim, Yong-Bum;Choi, Ki-Yong;Kang, Ji-Yoon;Kim, Tae-Song
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1988-1990
    • /
    • 2002
  • 마이크로 바이오칩용 미세 무게 감지 소자를 개발하기 위해 통상적인 MEMS 공정에 PZT sol solution을 함침하여 binder로서 적용하는 복합적인 스크린 인쇄 방법을 적용해 $800-850^{\circ}C}$의 비교적 저온에서 높은 소결밀도와 우수한 전기적인 특성을 가지는 PZT-0.12PCW 후막 구동형 캔틸레버 소자를 Pt/$TiO_2$/YSZ/$SiO_2$/Si 기판에 제조하였다. 제조된 PZT-0.12PCW 후막 구동형 캔틸레버 소자의 공진 주파수와 변위를 레이저 미소 변위 측정 시스템을 이용하여 공기 중 및 액체 중에서 측정함으로써 캔틸레버 크기에 따른 공진 특성 변화, 액체 내에서의 댐핑 효과 등을 분석할 수 있었다. 또한 Au를 증착하거나biotin-streptoavidin 반응을 통해 단백질을 고정화시켜 무게변화를 야기시킨 후 소자의 감도를 평가함으로써 PZT-0.12PCW 후막 구동형 캔틸레버를 우수한 성능의 바이오칩용 미세 무게 감지 소자로 응용할 수 있음을 알 수 있었다.

  • PDF

Experimental Investigation of Electrostatic Dripping and Atomization Mode through Non-MEMs based Nozzle Design

  • Choi, Kyung-Hyun;Dang, Hyun-Woo;Rehmani, M.A. Ali
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.13.2-13.2
    • /
    • 2009
  • Electrostatic printing either it is drop-on-demand or continuous has immense applications in non-contact printing systems such as solar cells, flexible printed circuits, RFIDs and bio applications. In this paper a laboratory manufactured nozzle has been designed for the experimental investigation of electrostatic dripping and atomization of liquid. Dripping and atomization conditions such as voltage, nozzle tip diameter, distance between counter electrode and flowrate has been indentified for the designed nozzle. Furthermore it is also demonstrated that the diameter of a generated droplet could be reduced from a significantly large size to a narrow size distribution which can be controlled by volumetric flow rate and applied voltage. This study will help in classify the conditions between different electrostatic dripping mode such as drop-on-demand formation, jet mode and finally the atomization mode based on the laboratory fabricated nozzle head.

  • PDF