• Title/Summary/Keyword: bio sensor

Search Result 598, Processing Time 0.032 seconds

Design and Implementation of Flexible Sensor to Measure Mechanical Stiffness of Soft Particles (Soft Particle의 강성 측정을 위한 단순한 구조의 유연 물질 센서의 개발)

  • Ihn, Yong Seok;Yang, Minho;Koo, Ja Choon
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.133-139
    • /
    • 2016
  • Increasing interest of human health, building bio-database (Bio DB) has been become a hot issue in life science. Consequently, Single Cell Analysis (SCA) which can explain biodiversity of lives has been a significant factor for building Bio DB. In numerous studies from these analyses, they have been showed that mechanical properties of cells can serve explanation of biological heterogeneity and criterion of disease states. Therefore, measuring mechanical properties of cells have great potential to be used in bio-medical applications. However, traditionally, many researchers have undergone difficult and time consuming work because handling small sized cells usually requires high-skilled technique. Thus, this paper shows robotized stiffness measurement technique using fixed ended beam sensor, precision motorized stage and substrate which have wall structure.

High Sensitivity Analysis of Optical Bio-Sensor based on Grating-Assisted Strip Directional Coupler (격자 구조형 스트립 방향성 결합기에 기초한 광 바이오-센서의 고 민감도 분석)

  • Kwang-Chun Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.157-162
    • /
    • 2023
  • A highly sensitive refractive index bio-sensor based on grating-assisted strip directional coupler (GASDC) is proposed. The sensor is designed using two asymmetric strip waveguides with a top-loaded grating structure in one of the waveguides. Maximum light couples from one waveguide to the other at the resonance wavelength satisfying phase-matching condition (PMC), and it shows that the change in phase-matching condition with the change in refractive index of the analyte medium in the cover region can be used as a measure of the sensitivity. The proposed sensor will be an on-chip device with a high refractive index sensitivity, and the sensor configuration offers a low propagation loss, thereby enhancing the sensitivity. Furthermore, variation of the sensitivity with the waveguide parameters of sensor is evaluated to optimize the design.

Implementation of a Remote Bio-Equipment System for Smart Healthy Housing Properties

  • Han, Seung-Hoon
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.23-29
    • /
    • 2014
  • It is essential to investigate the structure and the main characteristics of BSN (Bio-Sensor Network) platform in built smart healthcare environment while designing healthy housing facilities. For this study, WSN (Wireless Sensor Network) data transmission technologies have been employed with medical sensors, and optimal medical devices would provide various Web 2.0 services by connecting to the WiBro network. The BSN platform normally recognizes in surroundings of WBAN (Wireless Body Area Network) or WPAN (Wireless Personal Area Network), and it is possible to manage sensor nodes by utilizing SOAP (Simple Object Access Protocol) and REST (REpresentational State Transfer). In addition, the feature of SNMP (Simple Network Management Protocol) for mobile gateway is also included for being adapted to huge network structure. Finally, BSN platform will play a role as important clues for developing personal WSN service models for smart healthy housing properties.

Fabrication and characterization of fine pitch IR image sensor using a-Si (비정질 실리콘을 이용한 미세 피치 적외선 이미지 센서 제조 및 특성)

  • Kim, Kyoung-Min;Kim, Byeong-Il;Kim, Hee-Yeoun;Jang, Won-Soo;Kim, Tae-Hyun;Kang, Tai-Young
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.130-136
    • /
    • 2010
  • The microbolometer array sensor with fine pitch pixel array has been implemented to the released amorphous silicon layer supported by two contact pads. For the design of focal plane mirror with geometrical flatness, the simple beam test structures were fabricated and characterized. As the beam length decreased, the effect of beam width on the bending was minimized, Mirror deformation of focal plane in a real pixel showed downward curvature by residual stress of a-Si and Ti layer. The mirror tilting was caused by the mis-align effect of contact pad and confirmed by FEA simulation results. The properties of bolometer have been measured as such that the NETD 145 mK, the TCR -2 %/K, and thermal time constant 1.99 ms.

A Study on Sensing Characteristics of Carbon Nanotube Smart Composite Nano Sensors Based on Electrical Impedance Measurement (탄소나노튜브 스마트 복합소재의 전기적 임피던스 변화를 이용한 나노센서의 센싱 특성 연구)

  • Kang, I.P.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • To address the need for new intelligent sensing, this paper introduces nano sensors made of carbon nanotube (CNT) composites and presents their preliminary experiments. Having smart material properties such as piezoresistivity, chemical and bio selectivity, the nano composite can be used as smart electrodes of the nano sensors. The nano composite sensor can detect structural deterioration, chemical contamination and bio signal by means of its impedance measurement (resistance and capacitance). For a structural application, the change of impedance shows specific patterns depending on the structural deterioration and this characteristic is available for an in-situ multi-functional sensor, which can simultaneously detect multi symptoms of the structure. This study is anticipated to develop a new nano sensor detecting multiple symptoms in structural, chemical and bio applications with simple electric circuits.

  • PDF

A bio-sensor SoC Platform Using Carbon Nanotube Sensor Arrays (CNT 배열을 이용한 bio-sensor SoC 설계)

  • Chung, In-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.8-14
    • /
    • 2008
  • A fully CMOS-integrated carbon nanotube (CNT) sensor array is proposed. After the sensor chip is fabricated in commercial CMOS process, the CNTs network is formed on the top of the fabricated sensor chip through the room-temperature post-CMOS processes. When the resistance of the CNT is changed by the chemical reaction, the read-out circuit in the chip measures the charging time of the $R_{CNT}$-Capacitor. finally the information of measured frequency is converted to a digital code. The CMOS sensor chip was fabricated by standard 0.18um technology and the size of the $8{\times}8$ sensor array is $2mm{\times}2mn$. We have carried out an experiment detecting the biochemical material, glutamate, using this sensor chip. From the experiment the CMOS sensor chip shows the feasibility of sensor for the simultaneous detection of the various target materials.

Prediction of the Upper Limb Motion Based on a Geometrical Muscle Changes for Physical Human Machine Interaction (물리적 인간 기계 상호작용을 위한 근육의 기하학적 형상 변화를 이용한 상지부 움직임 예측)

  • Han, Hyon-Young;Kim, Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.927-932
    • /
    • 2010
  • Estimation methods of motion intention from bio-signal present challenges in man machine interaction(MMI) to offer user's command to machine without control of any devices. Measurements of meaningful bio-signals that contain the motion intention and motion estimation methods from bio-signal are important issues for accurate and safe interaction. This paper proposes a novel motion estimation sensor based on a geometrical muscle changes, and a motion estimation method using the sensor. For estimation of the motion, we measure the circumference change of the muscle which is proportional to muscle activation level using a flexible piezoelectric cable (pMAS, piezo muscle activation sensor), designed in band type. The pMAS measures variations of the cable band that originate from circumference changes of muscle bundles. Moreover, we estimate the elbow motion by applying the sensor to upper limb with least square method. The proposed sensor and prediction method are simple to use so that they can be used to motion prediction device and methods in rehabilitation and sports fields.

Development a glucose-FIA system with a fiber optic oxygen sensor

  • Sohn, Ok-Jae;Lam, Tuan-Hung;Rhee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.730-734
    • /
    • 2005
  • Flow injection analysis (FIA) system was developed to monitor glucose concentrations in biotechnological processes. A fiber optic oxygen sensor was used to determine consumption of oxygen concentration by reaction of immobilized glucose oxidase (GOD). The GOD was immobilized on VA-Epoxy carrier and integrated into FIA system. A calibration curve for glucose was obtained in the range of 0.5 $g/L{\sim}3.0$ g/L.

  • PDF

Disposable in-field electrochemical potable sensor system for free available chlorine (FAC) detection

  • Chang, Seung-Cheol;Park, Deog-Su
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.449-456
    • /
    • 2007
  • The work described in this study concerns the development of a disposable amperometric sensor for the electrochemical detection of a well-known aqueous pollutant, free available chlorine (FAC). The FAC sensor developed used screen printed carbon electrodes (SPCEs) coupled with immobilised syringaldazine, commonly used as an indicator in photometric FAC detection, which was directly immobilised on the surface of SPCEs using a photopolymer PVA-SbQ. To enable in-field analysis of FAC, a prototype hand-held electrochemical analyzer has been developed to withstand the environment with its rugged design and environmentally sealed connections; it operates from two PP3 (9 volt) batteries and is comparable in accuracy and sensitivity to commercial bench top systems. The sensitivity of the FAC sensor developed was $3.5{\;}nA{\mu}M^{-1}cm^{-2}$ and the detection limit for FAC was found to be $2.0{\;}{\mu}M$.