• Title/Summary/Keyword: binding of chlorides

Search Result 21, Processing Time 0.021 seconds

Behavior of Chloride Binding in Hardened Cement Pastes (Forcused on $C_3A$ content) (시멘트 경화체내 염화물의 고정화 성상 ($C_3A$ 함유량을 중심으로))

  • 임순지;소형석;소승영;박홍신;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.87-92
    • /
    • 1994
  • The main objective of this study is to determine the critical chloride ion concentrations in the pore solutions causing depassivation of steel reinforcement in concrete made with cements of different $C_3A$ contents. Cement pastes with water-ratio of 0.5 were prepared using four cements with $C_3A$ contents of 0.46, 5.97, 9.14, and 9.65 percent. The pastes were allowed to hydrate in sealed containers for 28days and then objected to pore solution expression. The expressed pore fluids were analyzed for chloride and hydroxyl ion concentrations. It was found that the free cholride concentration in the pore solution decreases significantly with an increase in the $C_3A$ content of the cement. With increasing level of chloride addition, although the alsolute amount of bound chloride increase, the ratio of bound to total chlorides decreases.

  • PDF

Cyclohexane Oxidations by an Iron-Palladium Bicatalytic System; Soluble Catalysts and Polymer Supported Catalysts

  • Jun, Gi Won;Sim, Eun Gyeong;Park, Sang Eon;Lee, Gyu Wan
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.398-400
    • /
    • 1995
  • Selective oxidation of cyclohexane in acetone solution has been studied using iron catalysts with hydrogen peroxide in-situ produced by palladium catalyst. Iron tetraphenylporphyrin chloride shows the highest activity among the tested chlorides and porphyrin complexes of some metals of the first transiton series. Iron chloride and iron tetraphenylporphyrin chloride were supported on four kinds of 4-vinylpyridine copolymer with styrene or divinyl-benzene. Nitrogen 1s photoelectron spectra give the evidence that pyridyl nitrogens of the 4-vinyl pyridine copolymer act as ligands to bind iron species. The copolymer with styrene is the most efficient support for the binding because its solubility in catalyst preparation solvent (methylene chloride) gives the pyridyl group advantage to contact with the iron catalysts. However, better catalytic activity per iron atom could be obtained with a rigid crosslinked polymer due to active site isolation.

Chloride Threshold Value for Steel Corrosion considering Chemical Properties of Concrete (콘크리트의 화학적 특성을 고려한 철근 부식 임계 염소이온 농도)

  • Song, Ha-Won;Jung, Min-Sun;Ann, Ki Yong;Lee, Chang-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.75-84
    • /
    • 2009
  • The present study assesses the chloride threshold level for corrosion of steel in concrete by examining the properties of four different binders used for blended concrete in terms of chloride binding, buffering of cement matrix to a pH fall and the corrosion behaviour. As binders, ordinary Portland cement (OPC), 30% pulverised fuel ash (PFA), 60% ground granulated blast furnace slag (GGBS) and 10% silica fume (SF) were used in a concrete mix. Testing for chloride binding was carried out using the water extraction method, the buffering of cement matrix was assessed by measuring the resistance to an artificial acidification of nitric acid, and the corrosion rate of steel in mortar with chlorides in cast was measured at 28 days using an anodic polarisation technique. Results show that the chloride binding capacity was much affected by $C_{3}A$ content and physical adsorption, and its order was 60% GGBS>30% PFA>OPC>10% SF. The buffering of cement matrix to a pH fall was varied with binder type and given values of the pH. From the result of corrosion test, it was found that the chloride threshold ranged 1.03, 0.65, 0.45 and 0.98% by weight of cement for OPC, 30% PFA, 60% GGBS and 10% SF respectively, assuming that corrosion starts at the corrosion rate of $0.1-0.2{\mu}A/cm^{2}$. The mole ratio of [$Cl^{-}$]:[$H^{+}$], as a new presentation of the chloride threshold, indicated the value of 0.008-0.009, irrespective of binder, which would be indicative of the inhibitive characteristic of binder.

Monitoring on Compressive Strength and Carbonation of Reinforced Concrete Structure with 100% Recycled Aggregate (순환골재를 100% 사용한 철근콘크리트 구조물의 압축강도 및 탄산화 진행 모니터링)

  • Lee, Sang-Yun;Kim, Gyu-Yong;Yoon, Min-Ho;Na, Chul-Sung;Lee, Sang-Kyu;Shin, Sung-Gyo;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.383-389
    • /
    • 2019
  • The supply of natural aggregate for concrete has been difficult, and the amount of construction waste has been continuously increasing. Therefore, the necessity of using recycled aggregate made of construction waste as aggregate is rised. Therefore, many studies on the characteristics of concrete using recycled aggregate have been made and positive studies have been reported mainly in recent studies. A study on the chlorides binding effect of the mortar with recycled coarse aggregate has been reported. However, due to the user's perception of waste, most of the recycled aggregate currently produced is used only for low value-added products. In order to improve the recognition of recycled aggregate and the user's perception of recycled aggregate concrete, long-term monitoring of the structure with 100% recycled aggregate was conducted to confirm the applicability of the recycled aggregate concrete.

Influence of Reinforcements on the Chloride Diffusion Analysis of Concrete Structures (철근의 영향을 고려한 콘크리트 구조물의 염소이온 확산해석)

  • 오병환;장봉석;이명규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.883-891
    • /
    • 2002
  • The chloride penetration in concrete structures is influenced by many factors such as types of cement and admixture proportion. Therefore, the effects of these factors on chloride diffusion must be correctly considered. The conventional diffusion analysis also neglected the existence of reinforcing bar in concrete structures. The purpose of the present paper is therefore to investigate the effect of reinforcing bar on the chloride diffusion in concrete structures. For this purpose, a comprehensive finite element analyses have been conducted to obtain chloride penetration profile. The results indicate that the chlorides are accumulated in front of a reinforcing bar and that the accumulation is much larger for the case of large diameter bars. The higher accumulation of chloride at bar location causes much faster corrosion of reinforcing steel. It can be concluded from the present study that the effects of reinforcing bars must be considered in chloride diffusion analysis for more realistic prediction of durable life of concrete structures.

Analysis Technique for Chloride Penetration in High Performance Concrete Behavior Considering Time-Dependent Accelerated Chloride Diffusivity (촉진염화물 확산계수의 시간의존성을 고려한 고성능 콘크리트의 염화물 침투 해석기법)

  • Kwon, Seung-Jun;Park, Sun-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.145-153
    • /
    • 2013
  • Recently, accelerated chloride diffusion coefficients are used for an evaluation of chloride behavior. Similar as apparent diffusion coefficients, accelerated diffusion coefficients decrease with time. In this study, decrease in diffusion coefficient with time is simulated with porosity. Utilizing DUCOM-program, porosities from 15 mix proportions are obtained and diffusion coefficients are modelled with regression analysis of porosity for 270 days. Considering non-linear binding capacity which means the relation between free and bound chloride ion, chloride behavior in high performance concrete is evaluated. Through utilizing the previous test results for concrete under chlorides for 180 days, the applicability of the proposed technique is verified. The proposed technique is evaluated to reasonably predict the chloride behavior in concrete with various w/c (water to cement) ratios and mineral admixtures (GGBFS and FA). It is also shown that decrease in chloride diffusion should be considered for chloride prediction in concrete with mineral admixture since it has very clear decrease in diffusivity with time.

Chloride Penetration Resistance of Ternary Blended Concrete and Discussion for Durability (삼성분계 혼합콘크리트의 염화물 침투 저항성 및 내구성에 대한 고찰)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu;Kim, Jae-Hwan;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.439-449
    • /
    • 2008
  • Mineral admixtures are used to improve the quality of concrete and to develop sustainability of concrete structures. Supplementary cementitious materials (SCM), such as silica fume (SF), granulated blast furnace slag (GGBS) and pulverized fly ash (PFA), are gradually recognized as useful mineral admixture for producing high performance concrete. The study on ternary blended concrete utilizing mainly three major mineral admixtures is limited and the study on durability and chloride induced corrosion resistance of ternary blended concrete is very few. This study examines the durability characteristics of the ternary blended concrete composed of different amount of the SCM with ordinary Portland concrete and the study experimentally focuses on corrosion resistance evaluation of ternary blended concrete subjected to chloride attack. In this study, 50% replacement ratio of mineral admixture to OPC was used, while series of combination of $20{\sim}40%$ GGBS, $5{\sim}15%$ SF and $10{\sim}45%$ PFA binder were used for chloride corrosion resistance test. This study concerned the durability properties of the ternary blended concrete including the corrosion resistance, chloride binding, chloride transport and acid neutralization capacity. It was found that the ternary blended concrete utilizing the SCM densified the pore structures to lower the rate of chloride transport. Also, increased chloride binding and buffering to acid were observed for the ternary blended concrete with chlorides in cast.

Synthesis of Diketo Copper(II) Complex and Its Binding toward Calf Thymus DNA (CTDNA) (이케토 구리(II) 착물의 합성 및 송아지 Thymus DNA(CTDNA)와의 상호작용)

  • Tak, Aijaz Ahmad;Arjmand, Farukh
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.177-182
    • /
    • 2011
  • A diketo-type ligand was synthesized by the Knoevenagel condensation reaction of thiophene-2-aldehyde with acetylacetone, subsequently its transition metal complexes with Cu(II), Ni(II), and Co(II) chlorides were also prepared. All the complexes were characterized by various physico-chemical methods. The molar conductivity data reveals ionic nature for the complexes. The electronic spectrum and the EPR values suggest square planar geometry for the Cu(II) ion. Interaction of the Cu(II) complex with CTDNA (calf thymus DNA) was studied by absorption spectral method and cyclic voltammetry. The $k_{obs}$ values versus [DNA] gave a linear plot suggesting psuedo-first order reaction kinetics. The cyclic voltammogram of the Cu(II) complex reveals a quasi-reversible wave attributed to Cu(II)/Cu(I) redox couple for one electron transfer with $E_{1/2}$ values -0.240 V and -0.194 V. respectively. On addition of CTDNA, there is a shift in the $E_{1/2}$ values 168 mV and 18 mV respectively and decrease in Ep values. The shift in $E_{1/2}$ values in the presence of CTDNA suggests strong binding of Cu(II) complex to the CTDNA.

Modeling of Chloride Ingress in Reinforced Concrete Structures (철근 콘크리트 구조물의 염소이온 침투 모델)

  • Koo, Hyun-Bon;Kim, Eui-Tae;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.25-34
    • /
    • 2003
  • The degradation of reinforced concrete (RC) structures due to physical and chemical attacks has been a major issue in construction engineering. Deterioration of RC structures by chloride attack followed by reinforcement corrosion is one of the serious problems. An objective of this study is to develop a form of mathematical model of chloride ingress into concrete. In order to overcome some limits of the previous approaches, a chloride ingress model, consisting of chloride solution intrusion through the capillary pore and chloride ion diffusion through the pore water, was proposed. Moreover, the variability of chloride ion diffusivity due to the degree of hydration of cement, relative humidity in pore, exposure condition, and variation of chloride binding, was considered in the model. In order to verify the proposed model, the results predicted by the proposed model were compared with analysis results of Life-365, a computer program for predicting the service life of reinforced concrete structures exposed to chlorides. In conclusion, the proposed model would be promising to predict the chloride ion profile and to estimate the service life of RC structures.

Response Mechanism of 5, 10, 15, 20-tetraphenyl(porphyrinato) Manganase(III) chloride-Based Ion-Selective Membranes (망간포르피린을 함유한 고분자형 이온선택성 막전극의 감응 메카니즘)

  • Hong, Young Ki;Kang, You Ra;Shin, Dae Ho;Shin, Doo Soon;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.270-278
    • /
    • 1996
  • Response mechanism for the chloride-selective membrane doped with 5, 10, 15, 20-tetraphenyl(porphyrinato)manganase(III) chloride(Mn(TPP)Cl) in PVC/DOS matrix is proposed by examining the visible spectra of the corresponding optode membrane. The visible spectra of Mn(TPP)Cl-doped membrane placed in aqueous solution show that the chloride ligand is easily replaced with water molecule. When other halogen ions, such as $F^-$, $Br^-$ and $I^-$, are added to the sample solution, they replace the water ligand, exhibiting distinctive change in the Soret band of Mn(TPP). On the other hand, bulky anions, such as SCN and salicylate, do not form a bond with the central metal. These results suggests that the potentiometric response of Mn(TPP)-based membrane results either from the ligand exchange (water with halides) at the central metal or from the counter ion exchange (chlorides with bulky lipophilic anions) around the positively charged porphyrin molecule in membrane phase. It was also noted that both hydration enthalpies of anions and their binding constants to Mn(TPP) play critical role in determining the potentiometric selectivity pattern of the membrane.

  • PDF