• Title/Summary/Keyword: binding layers

Search Result 79, Processing Time 0.025 seconds

다양한 온도에서 열처리한 씨앗 층 위에 열수화법을 이용한 ZnO 나노 막대의 성장

  • Bae, Yeong-Suk;Kim, Yeong-Lee;Kim, Dong-Chan;Gong, Bo-Hyeon;An, Cheol-Hyeon;Choe, Mi-Gyeong;U, Chang-Ho;Han, Won-Seok;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.433-433
    • /
    • 2009
  • ZnO-based materials have been extensively studied for optoelectronic applications due to their superiors physical properties such as wide direct bandgap (~3.37 eV), large exciton binding energy (~60 meV), high transparency in the visible region, and low cost. Especially, one-dimensional (1D) ZnO nanostructures have attracted considerable attention owing to quantum confinement effect and high crystalline quality. Additionally, various nanostructures of ZnO such as nanorods, nanowires, nanoflower, and nanotubes have stimulated the interests because of their semiconducting. and piezoelectric properties. Among them, vertically aligned ZnO nanorods can bring the improved performance in various promising photoelectric fields including piezo-nanogenerators, UV lasers, dye sensitized solar cells, and photo-catalysis. In this work, we studied the effect of the annealing temperature of homo seed layers on the formation of ZnO nanorods grown by hydrothermal method. The effect of annealing temperature of seed layer on the length and orientation of the nanorods was investigated scanning electron microscopy investigation. Transmission electron microscopy and X-ray diffraction measurement were performed to understand the effect of annealing temperatures of seed layers on the formation of nanorods. Moreover, the optical properties of the seed layers and the nanorods were studied by room temperature photoluminescence.

  • PDF

Microstructural and Wear Properties of WC-based and Cr3C2-based Cermet Coating Materials Manufactured with High Velocity Oxygen Fuel Process (고속 화염 용사 공정으로 제조된 WC계 및 Cr3C2계 Cermet 코팅 소재의 미세조직 및 마모 특성)

  • Kang, Yeon-Ji;Ham, Gi-Su;Kim, Hyung-Jun;Yoon, Sang-Hoon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.408-414
    • /
    • 2018
  • This study investigates the microstructure and wear properties of cermet (ceramic + metal) coating materials manufactured using high velocity oxygen fuel (HVOF) process. Three types of HVOF coating layers are formed by depositing WC-12Co, WC-20Cr-7Ni, and Cr3C2-20NiCr (wt.%) powders on S45C steel substrate. The porosities of the coating layers are $1{\pm}0.5%$ for all three specimens. Microstructural analysis confirms the formation of second carbide phases of $W_2C$, $Co_6W_6C$, and $Cr_7C_3$ owing to decarburizing of WC phases on WC-based coating layers. In the case of WC-12Co coating, which has a high ratio of $W_2C$ phase with high brittleness, the interface property between the carbide and the metal binder slightly decreases. In the $Cr_3C_2-20CrNi$ coating layer, decarburizing almost does not occur, but fine cavities exist between the splats. The wear loss occurs in the descending order of $Cr_3C_2-20NiCr$, WC-12Co, and WC-20Cr-7Ni, where WC-20Cr-7Ni achieves the highest wear resistance property. It can be inferred that the ratio of the carbide and the binding properties between carbide-binder and binder-binder in a cermet coating material manufactured with HVOF as the primary factors determine the wear properties of the cermet coating material.

Characterization and Distribution of Glycoconjugates in Human Pulmonary Tubercles by Lectin Histochemistry (폐결핵 결절에서 복합당질의 분포에 관한 Lectin 조직화학적 연구)

  • Yoon, Sik;Kim, Ji-Hong;Shin, Cheol-Shik;Jeong, Suk;Son, Mal-Hyun;Song, Sun-Dae;Kim, Jin-Jeong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.3
    • /
    • pp.248-261
    • /
    • 1994
  • Background: Lectins are proteins or glycoproteins of non-immune origin that recognize a specific sequence of sugar residues. The availability of a large number of lectins has provided the capacity to identify selectively glycoconjugates possessing distinctive chemical structure in diverse sites of highly specialized biological activity. The purpose of the present study was to investigate the lectin binding patterns of various components in human pulmonary tubercles. Method: Biopsy specimens of tuberculous lung were obtained from male adult patients who underwent a surgical resection for severe pulmonary tuberculosis. The specimens were processed and stained with 13 kinds of biotinylated lectins according to some modification of Hsu and Raine's methods. Results: 1) In the caseous necrotic lesions, BS $I-B_4$ showed negative reaction and BS I were also negative except some irregularly-shaped cells located in the marginal zone. All other lectins, however, showed a positive reaction with various binding patterns. 2) The epithelioid cells were broadly divided into three groups according to the reaction patterns in the cytoplasms and cell membranes. 3) WGA, ECL, PHA-L, PHA-E and LCA showed strong staining in the lymphocytes. 4) SBA showed a different binding patterns between the endothelial layers located in the region beyond the fibrous layers and those located within the fibrous layers. 5) PNA showed a positive reaction in the outer 1/3 to 1/2 of the fibrous layer, but showed no staining in the inner 1/2 to 2/3 of the fibrous layers. Conclusion: The present lectin histochemical study provided a useful information to assess the characterization and distribution of various glycoconjugates in each constituent of human pulmonary tubercles. The results demonstrate structural differences in the glycoconjugate composition of various components of the tubercles and reveal changes in glycosylation in the components during soft tubercle formation. This study provides a new data useful for the studies on the pathogenesis and pathology of human pulmonary tubercles.

  • PDF

Binding energy study from Photocurrent signal in $CdGa_2Se4$ layers

  • Lee, Sang-Youl;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.47-47
    • /
    • 2009
  • The photoconductive $CdGa_2Se4$ layer has been investigated using photocurrent (PC) spectroscopy as a function of temperature. Three peaks corresponding to the band-to-band transitions were observed in the PC spectra for all temperature ranges. Also, contrary to our expectation, the PC intensities decreased with decreasing temperatures. From the relation of log $J_{ph}$ vs 1/T, where $J_{ph}$ is the PC density, two dominant levels by the exponential variation of the PC with varying temperature were observed, one at high temperatures and the other at low temperatures.

  • PDF

수정진동자를 이용한 Au 표면에서 avidin-biotin 결합 리포좀 막의 구조 분석

  • Park, Jong-Won;Han, Seong-Ung;Gwon, Jeong-Hun;Park, Jin-Yeong;Jo, Hong-Sik;Lee, Haeng-Ja;Jang, Sang-Mok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.546-549
    • /
    • 2000
  • Liposomes and proteoliposomes, artificial membranes, can interact with many solutes, such as drugs, peptides and proteins. Immobilization of (proteo)liposomes as supramolecular aggregates on gold surfaces have potential applications in nanotechnology and biosensors. We demonstrate a quartz crystal analyzer (QCA) method to monitor the construction of multi layers of unilamellar liposomes based on avidin-biotin binding on gold surface using quartz crystal microbalance(QCM). Thus, QCA provides an on line and efficient method to detect the protein membranes construction and have applications to biosensing system.

  • PDF

A Study on the Manufacturing Rapid Prototype Using Bronze (Bronze를 이용한 쾌속조형제조에 대한 연구)

  • 전병철;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.204-209
    • /
    • 1995
  • The implementation of rapid prototyping technologies has been developed for automotive engineering by utilizing concurrent engineering principes integrated with slective laser sintering. The Selective Laser Sintering, in which a part is generated in layers form powder using a computer-controlled laser scanning apparatus and power feed system. An over view of the basic principles of SLS Machine operation is given. Binding mechanisms are described for power which becomes thermally activated bye the scanning laser beam; viscous flow and melting of a low-melting-point phase in powder. The production of parts from metal is described, including post processing to improve structural integrity and induce a transformation.

  • PDF

Point-defect study from low-temperature photoluminescence of ZnSe layers through the post-annealing in various ambient

  • Lee, Sang-Youl;Hong, Kwang-Joon;Kim, Hae-Jeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.378-378
    • /
    • 2010
  • The ZnSe epilayers were grown on the GaAs substrate by hot wall epitaxy. After the ZnSe epilayers treated in the vacuum-, Zn-, and Se-atmosphere, respectively, the defects of the epilayer were investigated by means of the low, temperature photoluminescence measurement. The dominant peaks at 2.7988 eV and 2.7937 eV obtained from the PL spectrum of the as-grown ZnSe epilayer were found to be consistent with the upper and the lower polariton peak of the exciton, $I_2$ ($D^{\circ}$, X), bounded to the neutral donor associated with the Se-vacancy. This donor-impurity binding energy was calculated to be 25.3 meV. The exciton peak, $I_l^d$, at 2.7812 eV was confirmed to be bound to the neutral acceptor corresponded with the Zn-vacancy.

  • PDF

Binding energy study from photocurrent signal in HgCdTe layers

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.379-379
    • /
    • 2010
  • $Hg_{1_x}Cd_xTe$ (MCT) was grown by hot wall epitaxy. Prior to the MCT growth, the CdTe (111) buffer layer was grown on the GaAs substrate at the temperature of $590^{\circ}C$ for 15 min. When the thickness of the CdTe buffer layer was $5\;{\mu}m$ or thicker, the full width at half maximum values obtained from the x-ray rocking curves were found to significantly decrease. After a good quality CdTe buffer layer was grown, the MCT epilayers were grown on the CdTe (111) /GaAs substrate at various temperatures in situ. The crystal quality for those epilayers was investigated by means of the x-ray rocking curves and the photocurrent experiment. The photoconductor characterization for the epilayers was also measured. The energy band gap of MCT was determined from the photocurrent measurement and the x composition rates from the temperature dependence of the energy band gap were turned out.

  • PDF

Insulation Life Estimation for Magnet Wire Under Inverter Surge and Temperature Stress (인버터 서지와 온도 스트레스 하에서 Magnet Wire 절연 수명평가)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.641-646
    • /
    • 2016
  • Coil specimen was prepared by coating a copper wire with two varnish thin layers: the first was polyamideimide (PAI)/nanosilica (5 wt%) varnish and the second was anti-corona PAI/nanosilica (15 wt%) varnish. Insulation breakdown voltage was investigated under inverter surge condition at $20^{\circ}C$, $70^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$, respectively. The insulation lifetime of the two layered coil was tens of times longer than that of original PAI coil. And the insulation lifetime decreased with increasing ambient temperature because there was weak binding strength between copper and varnish layer.

Electronic and Bonding Properties of BaGaGeH: Hydrogen-induced Metal-insulator Transition from the AlB2-type BaGaGe Precursor

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.153-158
    • /
    • 2012
  • The hydrogenation of $AlB_2$-type BaGaGe exhibits a metal to insulator (MI) transition, inducing a puckering distortion of the original hexagonal [GaGe] layers. We investigate the electronic structure changes associated with the hydrogen-induced MI transition, using extended H$\ddot{u}$ckel tight-binding band calculations. The results indicate that hydrogen incorporation in the precursor BaGaGe is characterized by an antibonding interaction of $\pi$ on GaGe with hydrogen 1s and the second-order mixing of the singly occupied antibonding $\pi^*$ orbital into it, through Ga-H bond formation. As a result, the fully occupied bonding $\pi$ band in BaGaGe changes to a weakly dispersive band with Ge pz (lone pair) character in the hydride, which becomes located just below the Fermi level. The Ga-Ge bonds within a layered polyanion are slightly weakened by hydrogen incorporation. A rationale for this is given.