• Title/Summary/Keyword: binding energies

Search Result 156, Processing Time 0.024 seconds

Theoretical Determination of Geometrical Structures of the Nitric Oxide Dimer, (NO)₂

  • 박종근;선호성
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1399-1408
    • /
    • 1999
  • Geometrical structures for the dimerization of (NO)₂ from (NO + NO) have been calculated using ab initio Har-tree-Fock (SCF), second-order Møller-Plesset perturbation (MP2), and coupled cluster with the single, double, and triple substitution [CCSD(T)] methods with a triple zeta plus polarization (TZP) basis set including diffuse Rydberg basis functions. The structure of (NO)₂ can be described by two interactions (N…N, N…O). One is the ONNO structure with an (N…N) interaction. In this structure, acyclic cis-ONNO with $C_{2v}$-symmetry, acyclic trans-ONNO with $C_{2h}$, and cyclic ONNO with trapezoidal structure ($C_{2v}$) are optimized at the MP2 level. The other structure is the ONON structure with an (N…O) interaction. In the structure, acyclic cis-ONON with Cs$^{-symmetry}$ and cyclic ONON of the rectangular ($C_{2h}$), square $(D_{2h})$, rhombic $(D_{2h})$, and parallelogramic $(D_{2h})$ geometries are also optimized. It is found that acyclic cis-ONNO (¹A₁) is the most stable structure and cyclic ONNO (³A₁) is the least stable. Acyclic trans-ONNO (³A₁) with an (N…N) interaction, acyclic trans-ONON and bicyclic ONON $(C_{2v})$ with (N…O) interaction, and acyclic cis- and trans-NOON with an (O…O) interaction can not be optimized at the MP2 level. Particularly, acyclic trans-ONNO with $C_{2h}$-symmetry can not be optimized at the CCSD(T) level. Meanwhile, acyclic NNOO (¹A₁, $C_s)$ and trianglic NNOO (¹A₁,$C_{2v})$ formed by the (O…N) interaction between O₂ and N₂ are optimized at the MP2 level. The binding energies and the relative energy gaps among the isomers are found to be relatively small./sec. Spiral CT scans during the arterial phase were obtained 35 seconds after the injection of contrast medium. CT findings of 78 lesions less than 4cm in diameter were correlated with angiographic findings. Results : The attenuation of lesions was high(n = 69), iso(n = 5), and low(n = 4) compared with liver parenchyma during the arterial phase of spiral CT. In lesions with high-, iso-, and low-attenuation during the arterial phase of spiral CT, hypervascularity on angiograms was found in 63 of 69(91.3%), three of five(60%), and three of four lesions(75%), respectively. Six lesions with high-attenuation on the arterial phase of spiral CT were not seen on angiography. Two iso-attenuated and one low-attenuated lesion were hypovascular on angiograms. Conclusion : The results of this study suggest that with some exceptions there was good correlation between the arterial phase of spiral CT and angiography.

Photoelectron Spectroscopy Study of the Semiconductor Electrode Nanomaterials for the Dye Synthesized Solar Cell (염료감응 태양전지 전극용 반도체 나노 물질의 광전자분광 연구)

  • Kim, Hyun Woo;Lee, Eunsook;Kim, D.H.;Seong, Seungho;Kang, J.-S.;Moon, S.Y.;Shin, Yuju
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.156-161
    • /
    • 2015
  • The electronic structures of the potential candidate semiconductor nanoparticles for dye-sensitized solar cell (DSSC), such as $ZnSnO_3$ and $Zn_2SnO_4$, have been investigated by employing X-ray photoemission spectroscopy (XPS). The measured X-ray diffraction patterns show that $ZnSnO_3$ and $Zn_2SnO_4$ samples have the single-phase ilmenite-type structure and the inverse spinel structure, respectively. The measured Zn 2p and Sn 3d core-level XPS spectra reveal that the valence states of Zn and Sn ions are divalent (Zn 2+) and tetravalent (Sn 4+), respectively, in both $ZnSnO_3$ and $Zn_2SnO_4$. On the other hand, the shallow core-level measurements show that the binding energies of Sn 4d and Zn 3d core levels in $ZnSnO_3$ are lower than those in $Zn_2SnO_4$. This work provides the information on the valence states of Zn and Sn ions and their chemical bonding in $ZnSnO_3$ and $Zn_2SnO_4$.

Partial Oxidation of Methane to $H_2$ Over Pd/Ti-SPK and Pd/Zr-SPK Catalysts and Characterization (Pd/Ti-SPK과 Pd/Zr-SPK 촉매상에서 수소 생산을 위한 메탄의 부분산화반응과 촉매의 특성화)

  • Seo, Ho-Joon;Kang, Ung-Il
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.648-652
    • /
    • 2010
  • Catalytic activities of the partial oxidation of methane (POM) to hydrogen were investigated over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK in a fixed bed flow reactor (FBFR) under atmosphere, and the catalysts were characterized by BET, XPS, XRD. The BET surface areas, pore volume and pore width of Horvath-Kawaze, micro pore area and volume of t-plot of Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were $284m^2/g$, $0.233cm^3/g$, 3.9 nm, $30m^2/g$, $0.015cm^3/g$ and $396m^2/g$, $0.324cm^3/g$, 3.7nm, $119m^2/g$, $0.055cm^3/g$, repectively. The nitrogen adsorption isotherms were type IV with hysteresis. XPS showed that Si 2p and O 1s core electronlevels of Ti-SPK and Zr-SPK substituted Ti and Zr shifted to slightly lower binding energies than SPK. The oxidation states of Pd on the surface of catalysts were $Pd^0$ and $Pd^{+2}$. XRD patterns showed that crystal structures of fresh catalyst changed amorphous into crystal phase after reaction. The conversion and selectivity of POM to hydrogen over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were 77, 84% and 78, 72%, respectively, at 973 K, $CH_4/O_2$ = 2, GHSV = $8.4{\times}10^4mL/g_{cat}{\cdot}h$ and were kept constant even after 3 days in stream. These results confirm superior activity, thermal stability, and physicochemical properties of catalyst in POM to hydrogen.

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

Differences in Structural Characteristics and Eu(III) Complexation for Molecular Size Fractionated Humic Acid (분자량별 분류에 따른 휴믹산의 구조적 특성 및 Eu(III)과의 착물 반응 특성 비교에 대한 연구)

  • Shin, Hyun-Sang;Rhee, Dong-Seok;Kang, Kihoon
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.159-166
    • /
    • 2001
  • A humic acid(HA, Aldrich Co) sample was subjected to ultrafiltration for molecular size fractionation and three fractions of different nominal size($F_1$: 1,000-10,000 daltons; $F_2$: 10,000-50,000 daltons; $F_3$: 100,000-300,000 daltons) were obtained. The structural characteristics of the size-fractionated HA were analyzed using their IR and solid state C-13 NMR spectral data, and the carboxylate group contents of the humic acids were determined using their pH titration data. The $^7F_0-{^5}D_0$ excitation spectra of Eu(III) complexes of the size-fractionated mgHA in aqueous solution were acquired($[Eu(III)]=1.0{\times}10^{-4}mol\;L^{-1}$, $(HA)=470-970mg\;L^{-1}$) at pH 5.0 using a pulsed tunable laser system, in which metal binding properties of the size-fractionated HA were elucidated and compared on another. Characterization of the IR and C-13 NMR spectral data indicated that the fraction($F_3$) with molecules of larger size were primarily aliphatic, while the fractions($F_1$, $F_2$) with smaller molecules of less than 50,000 daltons were predominantly aromatic. Titration data were consistent with an increase in the number of carboxylate groups per unit mass as molecular size became smaller. The $^7F_0-{^5}D_0$ excitation spectral data of Eu(III)-humate complexes showed that the peak maxima on these spectra were shifted toward lower energies with increasing molecular size of HA, indicating the higher degree of bindings of the Eu in the molecules of larger size. We also discussed the relationship of the lower energy shifts of the maximum peaks with increasing the molecular size of HA with the structural differences of the size-fractionated HA.

  • PDF

Spectroscopic Characterization of Soil Humic Acid Fractions by Molecular Weight (토양에서 추출한 흄산의 분자량별 분류에 따른 분광학적 성질 비교)

  • Shin, Hyun Sang;Moon, Hichung;Yang, Han Beom;Yun, Sock Sung
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.66-70
    • /
    • 1995
  • The soil humic acid was subdivided into four subfractions by molecular weight (F1: >100.000 dalton; F2: >100.000 dalton; F3: >10.000 dalton; F4: >2.000 dalton) using MP-dual hollow fiber ultrafiltration system. The characterization using IR, 1H and 13C NMR spectroscopy, showed similar spectroscopic features of HA, demonstrating that the bulk properties of HA subfractions are very similar to one another. IR spectral data showed a decrease in polysaccharide contents and increase in carboxylate functionality as molecular weight become smaller.functions. The structure of (NO) can be described by two interactions (N${\cdot}{\cdot}{\cdot}$N, N${\cdot}{\cdot}{\cdot}$O). One is the ONNO structure with an (N${\cdot}{\cdot}{\cdot}$N) interaction. In this structure, acyclic cis-ONNO with $C_{2v}$-symmetry, acyclic trans-ONNO with $C_{2h}$, and cyclic ONNO with trapezoidal structure ($C_{2v}$) are optimized at the MP2 level. The other structure is the ONON structure with an (N${\cdot}{\cdot}{\cdot}$O) interaction. In the structure, acyclic cis-ONON with Cs$^{-symmetry}$ and cyclic ONON of the rectangular ($C_{2h}$), square $(D_{2h})$, rhombic $(D_{2h})$, and parallelogramic $(D_{2h})$ geometries are also optimized. It is found that acyclic cis-ONNO $(^1A_1$) is the most stable structure and cyclic ONNO ($^3A_1$) is the least stable. Acyclic trans-ONNO ($^3A_1$) with an (N${\cdot}{\cdot}{\cdot}$N) interaction, acyclic trans-ONON and bicyclic ONON $(C_{2v})$ with (N${\cdot}{\cdot}{\cdot}$O) interaction, and acyclic cis- and trans-NOON with an (O${\cdot}{\cdot}{\cdot}$O) interaction can not be optimized at the MP2 level. Particularly, acyclic trans-ONNO with $C_{2h}$-symmetry can not be optimized at the CCSD(T) level. Meanwhile, acyclic NNOO ($^1A_1$, $C_s)$ and trianglic NNOO ($^1A_1$,$C_{2v})$ formed by the (O${\cdot}{\cdot}{\cdot}$N) interaction between $O_2$and $N_2$are optimized at the MP2 level. The binding energies and the relative energy gaps among the isomers are found to be relatively small./sec. Spiral CT scans during the arterial phase were obtained 35 seconds after the injection of contrast medium. CT findings of 78 lesions less than 4cm in diameter were correlated with angiographic findings. Results : The attenuation of lesions was high(n = 69), iso(n = 5), and low(n = 4) compared with liver parenchyma during the arterial phase of spiral CT. In lesions with high-, iso-, and low-attenuation during the arterial phase of spiral CT, hypervascularity on angiograms was found in 63 of 69(91.3%), three of five(60%), and three of four lesions(75%), respectively. Six lesions with high-attenuation on the arterial phase of spiral CT were not seen on angiography. Two iso-attenuated and one low-attenuated lesion were hypovascular on angiograms. Conclusion : The results of this study suggest that with some exceptions there was good correlation between the arterial phase of spiral CT and angiography.

  • PDF