• Title/Summary/Keyword: binary split

Search Result 41, Processing Time 0.022 seconds

Walking assistance system using texture for visually impaired person (질감 특징을 이용한 시각장애인용 보행유도 시스템)

  • Weon, Sun-Hee;Choi, Hyun-Gil;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.77-85
    • /
    • 2011
  • In this paper, we propose an region segmentation and texture based feature extraction method which split the pavement and roadway from the camera which equipped to the visually impaired person during a walk. We perform the hough transformation method for detect the boundary between pavement and roadway, and devide the segmented region into 3-level according to perspective. Next step, split into pavement and roadway according to the extracted texture feature of segmented regions. Our walking assistance system use rotation-invariant LBP and GLCM texture features for compare the characteristic of pavement block with various pattern and uniformity roadway. Our proposed method show that can segment two regions with illumination invariant in day and night image, and split there regions rotation and occlution invariant in complexed outdoor image.

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

Object Detection from Mongolian Nomadic Environmental Images

  • Perenleilkhundev, Gantuya;Batdemberel, Mungunshagai;Battulga, Batnyam;Batsuuri, Suvdaa
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.173-178
    • /
    • 2019
  • Mongolian historical and cultural monuments on settlement areas of stone inscriptions, stone images, rock-drawings, remains of cities, architecture are still telling us their stories. These monuments depict the understanding of the word, philosophical and artistic outlook, beliefs, religion, national art, language, culture and traditions of Mongols [1]. Nowadays computer science, especially computer vision is applying in the other science fields. The main problem is how to apply and which algorithm can detect and classify the objects correctly. In this paper, we propose a method to detect object from Mongolian nomadic environment images. This work proposes a method for object detection that is the combination of the binary operations in the edge detection results. We found out the best method and parameters of state-of-the-art machine learning algorithms. In experimental result, we evaluate our results with 10-fold cross validation and split 66% strategies.

An Experimental Study on Text Categorization using an SVM Classifier (SVM 분류기를 이용한 문서 범주화 연구)

  • 정영미;임혜영
    • Journal of the Korean Society for information Management
    • /
    • v.17 no.4
    • /
    • pp.229-248
    • /
    • 2000
  • Among several learning algorithms for lexl calegoriration. SVM(Snpport Vsctor Machines) has been provcd to ouq~e~fotm other classifiers. Th~study e~~aluales the categarizalion ability of en SVM classifier using the ModApte split of the Reutcrs-21578 dataset. First. an experiment 1s perlormed to test a few feature wetghtlng schemes that will be used in thc calegarization tasks. Second, (he categorization periarrnances of the lulear SVM and the non-linear SVM are compared. Finally. the binary SVM classifier is expanded into a multi-class classifier and thek pcrforrnnnces are comparativcly evaluated.

  • PDF

Double monothetic clustering for histogram-valued data

  • Kim, Jaejik;Billard, L.
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.3
    • /
    • pp.263-274
    • /
    • 2018
  • One of the common issues in large dataset analyses is to detect and construct homogeneous groups of objects in those datasets. This is typically done by some form of clustering technique. In this study, we present a divisive hierarchical clustering method for two monothetic characteristics of histogram data. Unlike classical data points, a histogram has internal variation of itself as well as location information. However, to find the optimal bipartition, existing divisive monothetic clustering methods for histogram data consider only location information as a monothetic characteristic and they cannot distinguish histograms with the same location but different internal variations. Thus, a divisive clustering method considering both location and internal variation of histograms is proposed in this study. The method has an advantage in interpreting clustering outcomes by providing binary questions for each split. The proposed clustering method is verified through a simulation study and applied to a large U.S. house property value dataset.

A Study on the Performance of BPSK Homodyne Optical Receiver User the Decision Directed PLL (Decision directed PLL을 이용한 BPSK Homodyne 광 수신기의 성능에 관한 연구)

  • Lee, Ho-Joon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.598-603
    • /
    • 1990
  • This study evaluates the performance of an optical receiver for binary phase shift keying (BPSK) signals in the presence of short noise originating from the photo diode and phase noise of the optical source. The case of using I.O. hybrid compare with the fiber optic hybrid to mix received optical signal and laser local oscillator signal. The impact of these noise is minimized if loop natural frequency and power split ratio between data and carrier recovery branch are choosen optimally. Then it is obtained that required laser linewidt to achieve a BER of 10**-9. The results are the same except theat in case of using the fiber optic hybrid the required optical power is twice as much as the I.O. hybrid.

  • PDF

Splitting between Region of Chromatic and Achromatic by Brightness and Chroma (명암과 채도에 의한 색상영역과 비색상영역의 분할)

  • Kwak, Nae-Joung;Hwang, Jae-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.7
    • /
    • pp.107-114
    • /
    • 2010
  • Color is a sense signal for human to perceive being through light, and the color is divided into chromatic color and achromatic color. Chromatic color has hue, intensity, and saturation, but achromatic color has only intensity among the properties of chromatic color and doesn't have hue and saturation. Therefore it is important to split colors of image into area for human to perceive colors and not to perceive ones based on vision of human being. In this paper, we find a function to split colors of image into chromatic region of chromatic color region and achromatic region of achromatic color region. First, the input image of RGB color space is converted into the image of HSI color space in consideration of human vision and get a binary image from the converted image. After then, a function to split colors into ROC(ROC: Region of chromatic.) and ROA(ROA:Region of achromatic) is yield. It is difficult to split color of a general image into ROC and ROA. Therefore, to get the chromatic area and achromatic area, we make gradient images to have all range of intensity and range of saturation and to have a little range of hue and yield the function. The evaluation is tested using subjective-quality by 50 non-experts for result images of test images and general images. The results of the proposed method get better 27.5~32.96% than these of the conventional method

Performance Analysis on Declustering High-Dimensional Data by GRID Partitioning (그리드 분할에 의한 다차원 데이터 디클러스터링 성능 분석)

  • Kim, Hak-Cheol;Kim, Tae-Wan;Li, Ki-Joune
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1011-1020
    • /
    • 2004
  • A lot of work has been done to improve the I/O performance of such a system that store and manage a massive amount of data by distributing them across multiple disks and access them in parallel. Most of the previous work has focused on an efficient mapping from a grid ceil, which is determined bY the interval number of each dimension, to a disk number on the assumption that each dimension is split into disjoint intervals such that entire data space is GRID-like partitioned. However, they have ignored the effects of a GRID partitioning scheme on declustering performance. In this paper, we enhance the performance of mapping function based declustering algorithms by applying a good GRID par-titioning method. For this, we propose an estimation model to count the number of grid cells intersected by a range query and apply a GRID partitioning scheme which minimizes query result size among the possible schemes. While it is common to do binary partition for high-dimensional data, we choose less number of dimensions than needed for binary partition and split several times along that dimensions so that we can reduce the number of grid cells touched by a query. Several experimental results show that the proposed estimation model gives accuracy within 0.5% error ratio regardless of query size and dimension. We can also improve the performance of declustering algorithm based on mapping function, called Kronecker Sequence, which has been known to be the best among the mapping functions for high-dimensional data, up to 23 times by applying an efficient GRID partitioning scheme.

Efficiency Improvement Using Two Balanced Subsets (두 개의 balanced subset을 이용한 효율성 개선)

  • Kim, HongTae
    • Convergence Security Journal
    • /
    • v.18 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • Efficiency is one of the most important factors in cryptographic systems. Cheon et al. proposed a new exponent form for speeding up the exponentiation operation in discrete logarithm based cryptosystems. It is called split exponent with the form $e_1+{\alpha}e_2$ for a fixed element ${\alpha}$ and two elements $e_1$, $e_2$ with low Hamming weight representations. They chose $e_1$, $e_2$ in two unbalanced subsets $S_1$, $S_2$ of $Z_p$, respectively. We achieve efficiency improvement making $S_1$, $S_2$ balanced subsets of $Z_p$. As a result, speedup for exponentiations on binary fields is 9.1% and speedup for scalar multiplications on Koblitz Curves is 12.1%.

  • PDF

Improvement of Network Intrusion Detection Rate by Using LBG Algorithm Based Data Mining (LBG 알고리즘 기반 데이터마이닝을 이용한 네트워크 침입 탐지율 향상)

  • Park, Seong-Chul;Kim, Jun-Tae
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.23-36
    • /
    • 2009
  • Network intrusion detection have been continuously improved by using data mining techniques. There are two kinds of methods in intrusion detection using data mining-supervised learning with class label and unsupervised learning without class label. In this paper we have studied the way of improving network intrusion detection accuracy by using LBG clustering algorithm which is one of unsupervised learning methods. The K-means method, that starts with random initial centroids and performs clustering based on the Euclidean distance, is vulnerable to noisy data and outliers. The nonuniform binary split algorithm uses binary decomposition without assigning initial values, and it is relatively fast. In this paper we applied the EM(Expectation Maximization) based LBG algorithm that incorporates the strength of two algorithms to intrusion detection. The experimental results using the KDD cup dataset showed that the accuracy of detection can be improved by using the LBG algorithm.

  • PDF